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Brane solution described in [M. Gogberashvili, Int. J. Mod. Phys. D11
(2002) 1635, hep-th/9812296; M. Gogberashvili, Int. J. Mod. Phys. D11
(2002) 1639, hep-ph/9908347; L. Randall and R. Sundrum, Phys. Rev.
Lett. 83 (1999) 3370, hep-ph/9905221; L. Randall and R. Sundrum, Phys.
Rev. Lett. 83 (1999) 4690, hep-th/9906064] has the form

ds* = e 2y datde” — d2? (1)

where the parameter k is determined by the bulk cosmological and five-
dimensional gravitational constants respectively.

Localization of standard model fields on the brane: [B. Bajc and G. Gabadadze,
Phys. Lett. B474 (2000) 282, hep-th/9912232].

Tunneling into an extra dimension: [S. Dubovsky, V. Rubakov and
P. Tinyakov, Phys. Rev. D62 (2000) 105011; hep-th/0006046].

Decaying cold dark matter into an extra space: [K. Ichiki, P. Garnavich,
T. Kajino, G. Mathews and M. Yahiro Phys. Rev. D68 (2003) 083518;
astro-ph/0210052].

The comoving density of cold dark matter was taken to decay over time
with a rate

pa’ exp(—2I't)
corresponding to the exponential decay of a metastable state.

Quantum Mechanics: exponential decay cannot last forever if the Hamil-
tonian is bounded below and cannot occur for small times if, besides that,
the energy expectation value of the initial state is finite [C. Chiu, E. Su-
darshan and B. Misra, Phys. Rev. D16 (1977) 520; L. Fonda, G. Ghirardi
and A. Rimini, Rept. Prog. Phys. 41 (1978) 587].



Due to four-dimensional Poincare invariance of the RS brane every fields
in this background can be decomposed into four-dimensional plane waves

¢ o< exp(ipux)ip(z) | (2)
where coordinate four momentum p,, coincides with the physical momen-
tum on the brane. For the sake of simplicity we put p'= 0 in what follows.
Under this assumption the equation

athb . 62k!z\8z(€—4k\z|az¢) + e—2k:\z|’u2¢ =0, (3)
gives
—02¢ + 4k sgn(2)0.¢ + e = B (4)
where F = py. The continuum spectrum of eq.(4) starts from E?=0
b E b
w = %€2k|z| a(E)J, (keldz') +b(E)Y, (ke’dz')} :

where v = /4 + p?/k?. The normalization condition
[ dee (B, 2)p(E', 2) = §(E — E')

as well as the boundary condition 0,¢|.,—o = 0 can be satisfied by taking

__AlE) _
B = J1+A%E) "E) J1+AXE)
A(E) = Lol BIR) = (v = 2)(k/ BV, (E/ k)

Jo-i(E[k) = (v =2)(k/E)J(E/k)

The general solution to Eq.(3) can be written as

ot, 2) = | Gult, z )60, 2)d

0

+ _/ Go(t, z, 290, 2)d2' (5)



where
Gi(t, z, ') = e 2kl /dEcos(Et)gp(E, 2)p(E, 2'),

sin(Et)

Golt, z, 2') = e M7 /dE 7

o(E, 2)p(E, ') .

To compute ¢(t, z) one needs to know the initial data ¢(0, z), $(0, z).
In what follows we take the following condition ¢(0, 2) = iEyp(0, 2)
corresponding to the free particle on the brane (2) with energy Ey. Corre-
spondingly the Eq.(5) takes the form

o0

ot, z)= [ [Gi(t, 2, ) +iEyGalt, z, 2)] (0, 2)dz" .  (6)

—0o0
At t = 0 the particle is confined on the brane. The probability of the
particle to remain on the brain at instant ¢ is given by

[((0)]o(t))]"

where ¢(0) denotes the brane localized initial state and the scalar product
is understood with the measure exp(—2k|z|)

(8(0)] (1) / dze (0, 2)o(t, 2) .
From Eq.(6) one finds
Re (60, 2)[6(t, 2)) = Re [TdE rO<E>|2] , 7

—iEt

Im (6(0, 2)|é(t, 2)) = —EoIm [ZodEe -

coF . ®
where

C(E) = (9(0)le(E)) -
In the above E' is real variable, but in the following it is understood that
E can be complex. The function |C'(E)|* has the simple poles determined

by the equation
i+ A(E)=0.



The equation

. E E )
AE)=1i = kH,Eljl (k) +(©2—-v)HY <k> =0,
under assumption u/k, E/k < 1 gives the pole in the fourth quadrant of

a complex F plane, E = Ey — iI', where

P F_W(Eo)Q
" V2 By 8S\k)

Since, when t > 0 and |E| — oo, e”#! — 0 in the fourth quadrant, for
evaluating of integrals entering Eqs.(7, 8) one can deform the integration

counter to the imaginary axis. In this way one finds
[ dEe P |C(B)P =
0
residue term — z'/dEe_Et |C(—iE)|. (9)
0

From this equation one sees that the second term gives an imaginary con-
tribution and correspondingly Re (¢(0, z)|o(t, z)) is determined by the
residue term only. In the same way one finds that Im (¢(0, 2)|o(t, 2))
is also determined only by the residue term. Following to the quantum
mechanical formalism, and by taking into account that u/k, Ey/k < 1
and the localization width of the scalar is ~ k7%, one can simply take

VE/V1I—e 1, for |z| < (2k)7",
0

*(0, Z):{ , for |2| > (2k)7" . 10)

Thus, the probability of finding the particle on the brane equals one when
t = 0. By evaluating the residue term and using Eq.(10) one finds

{p(0)]d(t))]> = 0.04 x et |



The minimal representation of spinors in five dimensions can be chosen to
be four dimensional. The five-dimensional Minkowskian gamma matrices
can be chosen as follows

[H=~r v [0 ot 5 (10
Fz_—m5,7(aﬂ o)”(o —1)’

—

where o = (1, &), o = (1, — &) with g; the three Pauli matrices.
The Dirac equation in the background

ds* = e_QU(Z)nﬂydac“d:U” —dz*

for the fermion coupled with the domain wall ® reads

i07(0. — 20"(2)) + ie? DTG, — gB| Y =0 . (11)
Solutions to this equation are linear combination of wave functions of the
form
Y = exp(—ip,x")x .
We do not expect the three momentum p to affect the overall picture of

particle tunneling into an extra space. Therefore, as in the case of scalar
field, we assume p'= 0. Under this assumption the Eq.(11) takes the form

(i) — H) =0, (12
where
H=¢" hogq) — (0, — 20’)] : (13)
So that the time evolution of initially brane localized fermion (0, z) is
given by
U(t, 2) = [ dBEeV'X(E, 2) (x(E)l(0)) (14)
0
where the scalar product is understood with the measure e 3*1*l and
Hy = FEYy. (15)
In terms of the right- and left-handed components
_ 1+ 17
XR = 9 Xy XL = 9 X



the Eq.(15) takes the form

(0, — 20" — g®) xr = —FEe’ X1 , (16)

(0, — 20"+ g®) xr = Ee’xg , (17)
where E' = pg. After eliminating x r from Eqs.(16, 17) one obtains a second
order equation for y

{(93 — 50’0, — 20" +6(0”")* — go'®
+g®" — (g®)* + EQGQU} xr =0. (18)
For the domain wall profile in the thin wall limit one can take
P =wvsgn(z) .

To the right (2 > 0) and left (2 < 0) of the brane one gets

[83 — 5k0, — gkv + 6k* — g*v* + Eze%ﬂ xL =0,

[(93 + 5k0. — gkv + 6k* — g*v* + E26_2k2} xr=0. (19)
The solution of Eq.(19) reads

Eesh E, B
= ol = okl
% a(E)Jy(ke ) +b(E)Yy(ke )

where v = (2gv+k)/2k. From Eqs.(16,17) one finds the following boundary
condition

XL = , (20)

X1(0) + (gv — 2k)x2(0) = 0,

where the prime stands for the derivative with respect to |z|. To satisfy
this boundary condition as well as the normalization condition

[ dze M FINL(E, 2)xu(E', 2) =6 (E - E) |

the coefficients a(FE), b(E) should have the form

CL(E) _ YV—1<E/k)
\/Yu2—1(E/k> + J2(E/k)




b(E) = — /1 — a*(E) .

The solution to Eq.(19) for £ =0
v o< ePRmavlzl (21)

is localized on the brane as long as £ < 2gv with the localization width
2/(2gv — k). Under assumption that the initial state is given by the left-
handed particle localized on the brane one finds

(Wr(0)vr(t) /dEe FxL BN 0) - (22)

The function |(x7(F)[¢£(0))|* may have the poles E in the fourth quad-
rant of complex E plane determined by the zeros of H\" W(E/k)H 2 (E /k)
indicating the presence of resonances in the spectrum of KK modes. For
evaluating the integral (22) one can deform the integration contour to the
imaginary axis as it was done in the previous case. In this way one gets

O<O¢L(O) [o(t)) =
e Bl =i fdBe P [{xp (=i E)wn ()] (23)

where

¢a = —2mi lim (E — E,) |(x L(E) | (0))]?

So that the probability to find the particle on the brane at time ¢ is given
by
(WL (0) ()] = 3 |en P ™E 1 interference terms .

One can easily check that

d{r(0)]r(t))

=0.
dt

t=0

Namely, by using Eqs.(12,13) and taking into account that (0, z) is
an even function of z one sees that in this expression the odd function is
integrated over a symmetric region. So that the evolution of the decay
process requires some time to reach the regime of exponential decay. For



large values of time ¢ > k! the second term in Eq.(23) becomes dominant
for which in this limit only modes with E' < k are relevant. Therefore, the
non-escape probability behaves asymptotically as

WLOLED® ~ (kt) .

Thus, after a long time the decay proceeds with respect to the power law.
One can choose the index v in such a way (2 < v < 5) the Hankel function
Hﬁl_)l(w) to have exactly one zero in the fourth quadrant of complex w
plane. This is the only zero of the product H ,5121(w)H f_)l(w) located in the
fourth quadrant since for real values of v, H\V(w)* = H{? (w*). From the
trajectories of zeros one finds that if v is close to 2.5 (v > 2.5) the function
H£1_>1(E /k) has the zero E = Ey — iI" in the fourth quadrant such that
Ey/k < 1and I' ~ k. Using Eq.( 21) for the initial state of the low lying
KK resonances one can simply take

20k _oCh=gullel |2 < (290 — k)L

24
: z| > (2gv — k)7t . (24)

So that at ¢ = 0 the particle is known to be on the brane, |z| < (2gv—Fk)~1,
with probability one. Using Eq.(24) and the previous consideration one can
perform the concrete calculations for different low lying KK resonances.



Conclusion

From the present consideration one sees that if the
transverse equation contains the second order time
derivative the corresponding decay law has the ex-
ponential form as long as I' < Ey. So that un-
der this assumption the decay of massive initially
brane localized metastable modes for scalar, vector
and gravitational fields follows to the exponential
law. Tt should be stressed that the choice ¢(0, z) =
iEyp(0, z) which is essential to this result is not
unique. However we find this condition to be natu-
ral as it corresponds to the free particle on the brane
with energy Ej corresponding to the metastable state.

In contrast, the decay of massive quasilocalized
fermion modes does not follow completely to the ex-
ponential law. Asin the standard quantum mechan-
ical case, the decay initially is slower than exponen-
tial, then comes the exponential region and after a
long time it obeys a power law.



