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                 ANZOR KHELASHVILI, TEIMURAZ NADAREISNVILI 
                                                   (TSU,HEPI) 
 
 
 

SELF-ADJOIN EXTENSION PROBLEMS FOR SINGULAR 
POTENTIALS 

I.Statment of problem in the Scrhrodinger equation. (Discrete spectrum). 
 

   From the demand, that Hamiltonian and 
1p ir r r

⎛ ⎞
⎜ ⎟
⎝ ⎠

∂=− +
∂ ∂  operators 

are Hermitian it follows, that [1.D.Blockincev, 2.V.Pauli, 3.A.Messia] 
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   Usually are considered regular potentials in the Schrodinger equation 
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Second term in (1.3) doesn’t obey (1.1) condition and is neglected 

usually 
     Singular potentials 
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Theorem. For transition potentials (with – sign in front of V0) 
Schrodinger equation except standard solutions, also have additional 
solutions. 
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At →r 0 from (1.6) we obtain 
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In the region 
                                            0<P<1/2                                                 (1.9)           
Both standard and additional solutions satisfy (1.1) condition (when 
P>1/2 only standard solutions stay!) 
    From (1.8) and (1.9) we obtain condition of exsitence of additional 
states 
                                         02)1( mVll <+                                      (1.10)           
   In [4-H.Bethe; R. Jackiw.”Intermediate quantum mechanics”] is 
formulated very strong requirement- Kinetic Energy matrix elements 
should be finite! We show, that if we take “whole” wave function 
additional states sustain mentioned strong requirement! 
    Additional solutions satisfy also requirement, that [5.-
L.Schiff.Quantum mechanics.] integral from particle coordinate 
probability density is  finite!  
Remark:  
 We think, that isn’t correct paragraph 35- “Falling on the center”in [6-
L.Landau, E.Lifchitz. Quantum mechanics].where is considered 

behavior of r
uR =  at small r 
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In (1.11) both terms are singular (second term is more singular!) and in 
[7- R. Newton  monograph] author notice: “If  P<1/2, then the second 
solution is irregular in sense, that it is dominant above first solution”. So 
R.Newton come very close to additional state problem, but don’t 
mentioned tat they exist! In [6] potential is made regular by cutting off it 
at some small r0 and the limit  is taken, which selects less singular  
solution at  and so additional solutions are neglected! But if we 
multiple (1.11) relation on r we get (7) relation, where we have, no 
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singularity in the 0<P<1/2 region and as mentioned above  and stu addu  are 
“equal in rights” members of (7) relation!                                                          
 
I I. Introduction of self-adjoint extension τ  parameter 
   It is well known, that for (1.4) and (1.5) type attractive potentials [8-
K.Case.Phys.Rev.80,797(1950); 9-K.Meetz.Nuovo Cimento 34, 
690(1964); 10- A.Perelomov, V.Popov.TMF.vol 4 (1970)] in the 
Schrodinger equation is shown, that it isn’t enough to know potential 
and is necessary to introduce  one arbitrary constant, which is equivalent 
to give boundary condition at the origin. Indeed, when 

                                          ( )20 2/12 +> lmV                                      (2.1)            

As one can see from (1.8) P is complex, both stu  and addu  solutions have 
same behavior at the origin and for example for 2r

gV −=  at small 

distances one have [7, 8] 
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Once B is arbitrary constant. On the Mathematical language it means, 
that H is symmetric (Hermitian), but isn’t Self-adjoint  operator and it is  
necessary to introduce  1 parameter for self-adjont extension(to make  H 
Self-adjoint !)[11-M.Reed,B.Simon:vol 2]. As was shown in [8] if B is 
fixed constant, then all eigensolutions form a complete orthonormal set, 
and E-eigenvalues are real! (Once such a properties have a  Self-adjoint 
H operator). But in this case we have “falling” on the center and energy 
isn’t bounded from below! 
    In the region  

                                          ( )20 2/12 +< lmV                                  (2.3)          

based on the above mentioned paragraph of [6] , is neglected  addu  

solutions. We notice above, that addu  solutions in the 0<P<1/2  region 
satisfy all  requirements. So is necessary to preserve it! Then for 
arbitrary  and levels ortogonality condition is 

stu
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And for ortogonality right side of (14) is zero 
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   So, we get, that for  ortogonality it is necessary to introduce self-
adjoint extension τ parameter 

                                             add
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All levels have sameτ  parameter. From (1.7) and (2.4) we have:  

a). ;   (0=adda 0)τ=

)

We   keep only standard levels and they are 
orthogonal! 
b). ;   0=sta (τ =±∞  We   keep only additional levels and they are 
orthogonal! 
c) When 0,−∞≠τ  then both levels exist at the same time! 
For some unknown reasons the Nature choose only standard levels yet! 
We think, that other cases are also possible! 
I I.I Scatering Problems (Continuous Spectrum). 

                             0
2 ;VV

r
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This interaction  is realized in nature- physical applications: . 
1).Gharge interacting with a point dipole [11-
H.Camblong...Phys.Rev.Lett.87,220402 (2001)] 
2).Interaction of a neutral, but polarizable atom with a charged wire [12-
J.Denschlag; Phys.Rev.Lett.81.737. (1998) 
3)Aaronov-Bom effect [13 –J.Audretsh…J.Phys.A28,2359 (1995)]. 
4).Black holes  [Gupta,Shabad…] 

     { } 2( ) ( )( ) ( ) ( ) ; 2 ; 0k p pB kU r kr A Jk J k krr k m−= + = E E>     (3.2)           

(3.2)For 0<P<1/2  
( )rJ krP− is regular at the origin and we keep it! 

a).Introduction of SAE parameter 
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 We use integrals from [14-J.Audretsch.J.Phys.A34,235 (2001)] for 
Bessels functions and get 
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From (3.5)  

                                                              (3.6)                 
2 2; 2P

pB Ak k mτ= = E

2
(3.5) is analog of (2.5) for continuous spectrum 

                
2 4 22 cos 1p p
p pAA k k pτ τ π∗ ⎡ ⎤+ +⎣ π=⎦                      (3.7)             

Based on the methodology of [14] and [15-S.Alliluev.JETP.Vol 61,p15 
(1970)] articles,where is considered  
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one can show, that τ parameter is introduced from the lower limit of the 
(3.8) integral as it was for the bound states and (3.8) is introduced from 
the upper limit of this integral (For bound states wave function decrease 
at large distances and we no analog of (3.7) relation).  
b).Phase Shifts Calculation. 

            { }( ) ( ) ;)(k pkr Ak J kr= ( ( )) pB k N kr+U r                                    (3.9)            
Second term is regular at the origin for 0<P<1/2  and we keep it! 

                      lim sin( )
2 lr

u C lR kr
r r

π δ
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                   [ ]1/2 /2 /p arctgP B Alδ π= + − −                                    (3.11)           
or using (3.5) definition of SA parameter we obtain:  

                [ ] 2( )p
pa krctgτ−1/2 /2p l pδ π= + −                              (3.12)            

In the literature is known only first term [16-
A.M.Perelomov;V.S.Popov.TMF.Vol 4.No1(1970)] 

a).B=0; 0;pτ =            [ ]1/2 /2st
p l pδ π= + −                                      (3.13)           
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b).A=0   ;pτ =±∞ / 2add st
p lδ δ π= ±                                              (3.14)           

+ sign in (3.14) is excluded, comparing it with asymptotic expression 

( )( ) 2/ sin /2 /4pN kr kr kr pπ π≈ − π−  

Remarks: 1. From  (3.12) we see that pδ  is depended on the energy 

for 
2( 2k m= )E 0,pτ ≠ ∞

0.p

,so scale invariance is violated! 

2. We considered  attractive potential, for which 
2/V V r=− δ >

0p

As 

one see from (3.12) may be δ <  or we get repulsive potential! So 

we see, that pτ parameter may change the NATURE of potential! 
We have two possibilities: 

a).From the Physical motivation restrict  pτ  parameter (Don’t change 
attractive potential by repulsive!) or as one see from (3.12) demand 

                      [ ] 21/2 2 ( )/ 0p
parctg kτ−l p π+ − >                                    

b).Agree, that pτ  can change potential nature! 
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Remarks: 
1.  (1.10).So in (3.15-3.20) one need SAE for l ,which 
satisfy (1.10).(l=0 always satisfy it!) 

0( 1) 2l l mV+ <

2. Total cross section σ  is infinite for  in usual quantum 

mechanics (

2
0 /V V r=−

0τ = ).We show, that for A=0 (τ =+∞)  and small k σ  
is again infinite, but in general case, when 

[ ] 2( )p
pa krctgτ−1/2 /2p l pδ π= + − σ can become finite! This 

problem need more careful investigation! 
3. From (3.12) and (3.16) we have 
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For pτ =0 or pτ =  ∞ pS have no poles, so  have no bound states as 

in usual quantum mechanics! But in the point  S have false 
pole! 

2
0/V V r=−

2 1,p
pi kτ =−
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iE
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−

= −
                                                 (3.22)              

But τ  parameter in general may be complex 

                             1 i 2τ τ τ= +
                                           (3.23)              

2iτ τ=where 2τ  describes absorption processes [16].For (full 
absorption) we obtain from (3.22) quasidiscret level 

                              1

22 ( ) p

iE
m τ

= −                                           (3.24)               

IV.Scattering length a 
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In [16] is calculated scattering length a for the following potential in the 
l=0 state 

                             
0
2( ) ( )VV r R r

r
θ=− −                                            (4.1)              

We now obtain more general formula using SAE.When  r<R wave 
function is 

  

1/2
0 0

0 1/

1/

2
0

2

00

;2 1/4; 1/4 2

sin( ln );2 1/4; 2 1/4

PPAr mV P mV

r r mV mV
χ

νγν

+⎧ < = −⎪=⎨
+ > = −⎪⎩

Br −+
                   (4.2)            

0γ  is SAE parameter, when one have “falling” on the center and is 
known in the literature [6,15,16] 
For r>R 

                            0 ( aC r )χ = −                                                         (4.3)            
“Sewing” condition at r=R gives 

 
(1 2 ) (1 2 );

(1 2 )

P

P

BR P
BR(1 2 )
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P
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P

a R
P AR

−
+

=− / 4
−
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−+         02 1mV <                       (4.4)            
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0

1 2 ( ln ) ;
1 2 ( ln )

ctg Ra R
ctg R

ν ν γ
ν γ γ

− −
=−

+ −                               (4.5) 02 1mV > / 4
When B=0 we get [16] article formula 

                         
(1 2 );
(1 2 )

Pa R
P

−=−
+                                                            

(4.6) 
As P<1/2, a<0 and it corresponds to attractive potential, but from (4.4) a 
have no definite sign- we can’t say one have attractive or repulsive 
interaction! 
SAE now we define 

                                           /A Bτ =−                                           (4.7) 
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1 1
1 1

2 2

(1 2 ) ; (1 2 )

(1 2 ) ; (1 2 )

P P

P P

a P R b P

a P R b P R

R+ −

−

= − − = +

= + = − −                            (4.9) 

In the region 

                                    0τ τ τ∞ < <                                                   (4.10) 
a>0 and we have repulsive interaction! 0

2( ) ( )VV r R r
r
θ= − −  is attractive 

potential and τ  parameter from (4.10) region can change it NATURE! 
Again one have two alternatives : 
a). From the physical motivation exclude (4.10) region. 
b). Agree that τ  can change interaction nature! 
Remarks: 
1). We expand (4.4) and (4.5) near 2 10mV / 4=  and get relation between 

τ  and 0γ  

                        12 0 1ctg τγ τ
+= −                                                             (4.11) 

2). 24 ( ) (atot )σ π τ σ τ= =  depends on !τ 0σ > demand restrict !τ  
 

2 1/ 40mV <V.Scattering effective radios ( ) 

                                                                  (5.1) 2 22 ( ) ( )0 0 00
r u r r drχ⎡ ⎤
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∞
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where         ( )0u C r a= −                                                                      (5.2) 
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⎭ ⎪ ⎪⎩
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                               ( )
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                                         (5.5) 

( )0 0r r τ=  is more complicated function, when .( )a a τ=  

00r >  demand restrict !τ  
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24 ( ) 2; 22 2 2 41 ( ) ( ) ( ) 1/ 4 ( )0 0

a k m
a a r k a r k

π τσ
τ τ τ τ⎡ ⎤

⎢ ⎥⎣ ⎦

= =
+ − +

E           (5.6) 

VI.Model of Valence electron  
                                    

                           0 ;2
V

V rr
α= − −       ,0V 0α >                                        (6.1) 

 
Notice that,this potential “naturally” appears for coulomb potential in 
the Klein-Gordon equation. Following [17-W.Krolikowski; Bulletin De 
L’ academics polonaise.Vol XVII.83(1979);18- 
A.A.Khelashvili,T.P.Nadareishvili, Bulletin of Georgian Acad.Sci:Vol 
164.no1(2001)] we obtain general solution of Schrodinger equation for 
(6.1) potential 

               
( )/21/2 1/ 2 ,1 2 ;1

/21/2 (1/ 2 ,1 2 ; )2

Pu C e F P P

PC e F P P

ρρ λ ρ

ρρ λ

−+= + −
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+

ρ

+
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Where P is given again by (1.8) and 
  2 ;ik rρ = ⋅   ;mi k iαλ η= − = −  E>0;    2 ;k mE= m k /              (6.3) η α=

SAE  
                                     2(2 )B PikAτ −=                                                (6.4) 

           lim sin ln2 ( 1/ 2) / 2 stu kr kr pr coul pη π δ δ⎡ ⎤
⎢ ⎥⎣ ⎦

≈ + − − −             (6.5) +→∞
where 
 
                             ( )arg 1/ 2st Pcoulδ λ= Γ + −                                       (6.6) 

( ) ( )
       ;arctgQpδ =      

( )
1 2 1/ 22(2 )

(1 2 ) 1/ 2
P PPQ kp P P

λ
τ

λ
Γ − Γ + −

=
Γ + Γ − −

/ 2 1/ 2

            (6.7) 

                        st l Pp coulδ δ δ π ⎡ ⎤⎣ ⎦= − + + −                                 (6.8) 

                ( )
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1/2 1/ 2
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2i l P P
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P
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λ
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⎢ ⎥
⎢ ⎥⎣ ⎦
+ − Γ + +

=
Γ − −
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                        1
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Q

stSPSP
+
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                                         iQ =1 is pole! 
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λ

Γ − − Γ −= −
Γ − + Γ +

;    2 ;k mE E 0= <        (6.11)   

From (6.11) we get pure ( 0E )st τ =  and ( )Eadd τ = ±∞ eigenvalues                     

                   
2 2

, 2 22 1/ 2 2 1/ 2 ( 1/ 2) 2 0

m mEst add n P n l mVr r

α α
⎡ ⎤

⎡ ⎤ ⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦

= − = −
+ ± + ± + −

  (6.12) 

 
                                                ( 1) 2 0l l mV+ <  

0

0

1/ 2 1/ 4 2

0 1/ 2 1/ 4 2

1( ) (2 1) (cos ) 1 (2 1) (cos ) 11
2 1

mV
st st

l l l l
l mV

f l P S l Pi
ik i

θ θ θ
θ

⎡ ⎤− + + ∞⎣ ⎦

= ⎡ ⎤− + +⎣ ⎦

⎧ ⎫⎪ ⎪⎡ ⎤+ Sθ ⎡ ⎤= + − + +⎨ ⎬−⎣ ⎦⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭−∑ ∑

                    ( )f f fVE SAEθ = +                                                       (6.13)  

When ,in the (6.13) leading term is0V →∞ fSE  and for small  is 0V
fSAE  

         
222( ) 2Red f f f f fVE VESAE SAEd

σ θ ∗= = + +
Ω

                   (6.14) 

            
22 0( 1/ 2) 2 ( 1/ 2)0 2 1
mV

P l mV l l= + − ≈ + −
+

                            (6.15) 

We keep in this case in fSAE only l=0 term and get 
2 0

2 3 2

2 0 2 0
0 0 0 0 1

2

sin

2cos( ln sin 2 2 ) sin cos ln sin 2 2
2 2SAE SAE

k k

mmV mV m
E

V

02 3
20

0 1 0
2 2 4 2

sin 22( )1 21 sin 2 sco ins 2( )
4 sin

2

SAE SAEV md mm
d k

V
E E

δ η
θ

θ θη σ π δ π θ η π δ σ
−

⎡ ⎤⎛ ⎞
× − − − − − − −⎢ ⎥⎜ ⎟
⎢ ⎝ ⎠⎣ ⎦

πσ θ δσθη
π σ

−
+ − ×

⎡ ⎤
= + − −⎢ ⎥Ω ⎣ ⎦

⎥

where the first term is usual Reserford formula modified for VE model 
last two terms are caused by SAE procedure and are similar to the short 
range interactions. So SAE can again play a role in potential nature!This 
formalism can be used also for ,π π+ −  scattering, where is used Klein-
Gordon equation.   
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 VIII. Concluding remarks. Summary 
 

1. Our main result: We show, that for   ;  

potentials in the region   (no “falling onto center!) 

it is necessary to keep second additional solution in the 0<P<1/2 
interval (We have our variant of Landau mentioned paragraph!) 
and it is also necessary to introduce  self-adjoint extension 

2lim 00
r V V

r
→−

→
00V⎛ ⎞⎜ ⎟

⎝ ⎠
>

( )21/ 2 2 0l + > mV

τ  
parameter. in both bound states and scattering problems. 

, , ,0E a r σ2. Physical quantities  depend on  τ  parameter and by this 

reason physical picture is different then in usual quantum 
mechanics! (As was mentioned above SAE can change nature of 
potential, pδ became energy dependent for , this 

potential have quasidiscret  level and so on. 

2/0V V r=−

                                          We have three possibilities: 
 
1).It should be found another strong requirement in the quantum 
mechanic mathematical formalism, which “destroys” additional 
states! 
2) If it isn’t possible, try to ‘’struggle’ against τ  parameter by 
physical demands: 0, 0,0r σ> > don’t change physical nature of 

interaction and so on.  
, ,0r a σ3).Admit SAE existence and find new levels,  and so on. And 

now it stay open the following question: Why the NATURE  “select” 
only standard states ( 0)τ = yet?!                        
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