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SELF-ADJOIN EXTENSION PROBLEMS FOR SINGULAR
POTENTIALS
|.Statment of problem in the Scrhrodinger equation. (Discrete spectrum).

(0 1
From the demand. that Hamiltonian and pr:_'(gJ“g] operators

are Hermitian it follows, that [ 1.D.Blockincev, 2.V .Pauli, 3.A . Mess

lim rR=u(0)=0
r—0

(1.1)
Usually are considered regular potentials in the Schrodinger equation
: A,
rI |_r)nor V =0 (1.2)
R el ey 4 g
r—0 1 3

Second term in (1.3) doesn't obey (1.1) condition and is neglected
usually
Singular potentials

Transition potentials

|rijgfa\/ -1 (\6>Q (15)

Theorem. For transition potentials (with — sign in front of V)

Schrodinger equation except standard solutions, also have additiona
solutions.

11 +1)
r2

u" + Zm[E -V (r)]u — u= O, u=Rr (16)

Proof:
At r -0 from (1.6) we obtain
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rgo = astr ? + a'add r ? = ust + uadd (1.7)
Where
1 2
Pz\/(l +§) —2m\, (1.8)
In the region
0<P<1/2 (1.9

Both standard and additional solutions satisfy (1.1) condition (when
P>1/2 only standard solutions stay!)

From (1.8) and (1.9) we obtain condition of exsitence of additional
states

I(1+1) < 2mV,, (1.10)

In IS
formulated very strong requirement- Kinetic Energy matrix elements
should be finite! We show, that if we take “whole” wave function
additional states sustain mentioned strong requirement!

Additional solutions satisfy aso requirement, that

integral from particle coordinate
probability density is finite!
Remark:
We think, that isn’'t correct paragraph 35- “Falling on the center”in
where is considered

behavior of R=% at small r

Lip L
R=Ar? +Br? (1.12)

r—0

In (1.11) both terms are singular (second term is more singular!) and in

author notice: “If P<1/2, then the second
solution isirregular in sense, that it is dominant above first solution”. So
R.Newton come very close to additional state problem but don't
mentioned tat they exist! In [6] potential is made regular by cutting off it
at some small Iy and the limit I, =0 is taken, which selects less singular
solution a r, — 0 and so additional solutions are neglected! But if we

multiple (1.11) relation on r we get (7) relation, where we have no
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singularity in the 0<P<1/2 region and as mentioned above U, and U are
“equal inrights’” membersof (7) relation!

| I. Introduction of self-adjoint extension - parameter
It is well known, that for (1.4) and (1.5) type attractive potentials

in the
Schrodinger equation is shown, that it isn't enough to know potential
and is necessary to introduce one arbitrary constant, which is equivalent
to give boundary condition at the origin. Indeed, when

2\, > (1+1/2)° 2.1)

As one can see from (1.8) P is complex, both Ut and Uyg, solutions have
same behavior at the origin and for example for v=-2 a small

I,2

distances one have [ 7, 8]
u~ AJr cos(\/ZmV0 —(1+2/2)* Inr + Bj (2.2)

Once B is arbitrary constant. On the Mathematical language it means,
that H is symmetric (Hermitian), but isn't Self-adjoint operator and it is
necessary to introduce 1 parameter for self-adjont extension(to make H
Self-adjoint ! [11-M.Reed,B.Simon:vol 2]. Aswas shown in [8] if B is
fixed constant, then all eigensolutions form a complete orthonormal set,
and E-eigenvalues are real! (Once such a properties have a Self-adjoint
H operator). But in this case we have “falling” on the center and energy
isn’t bounded from bel ow!
In the region

2m\, <(1+1/2)° (2.3)
based on the above mentioned paragraph of [6] , is neglected Ug

solutions. We notice above, that WU solutions in the 0<P<1/2 region

satisfy all U, requirements. So is necessary to preserve it! Then for
arbitrary E, and E,levels ortogonality condition is

m(EZ - E? ){ UU, = 2P{a%a® —adar | (2.4)
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And for ortogonality right side of (14) is zero

st st

9 &
afdd o a;dd (2.5)
So, we get, that for ortogonality it is necessary to introduce self-
adjoint extension 7 parameter
aadd

T= g (2.6)

All levels have same: parameter. From (1.7) and (2.4) we have:

9. &w=0; (=0 We  keep only standard levels and they are
orthogonal!

). a3 =0; (r=129 We keep only additional levels and they are
orthogonal!

c) When T # —0,0 then both levels exist at the same time!
For some unknown reasons the Nature choose only standard levels yet!
We think, that other cases are also possible!
| 1.1 Scatering Problems (Continuous Spectrum).

V =—%; \,>0 (3.1)
Thisinteraction isrealized in nature- physical applications: .
1).Gharge interacting with a point dipole [11-
H.Camblong...Phys.Rev.Lett.87,220402 (2001)]
2).Interaction of a neutral, but polarizable atom with a charged wire [ 12-
J.Denschlag; Phys.Rev.Lett.81.737. (1998)
3)Aaronov-Bom effect [ 13 —J. Audretsh...J.Phys.A28,2359 (1995)].
4).Black holes [Gupta,Shabad...]

U, (N =vkr { AK)J, (kn)+B(K)I_,(kn)} ;K =2MEE>0 (3

rJ o(kr
(3.2)For 0<P<1/2 vrd_p()

Isregular at the origin and we keep it!
a).Introduction of SAE parameter
| = j r2R’. (1R, (r)dr = 275k’ — k) (33)
0

We use integrals from |[14-JAudretsch.J.Phys A34,235 (2001)] for
Bessels functions and get



(AR 4 RR* 4 (R AL A ey, 28nap [k oL (KT
| ={AA"+BB" +(B"A+ A'B)cosp} 5(k k)+”(k2_k’2){k,j B* (k") Ak) (k) A(k)B(k)}

B (kﬁ( kY2 = Bk 2 _

A (kr) A(k) TP (3.5)
From (3.5)
(3.5) isanalog of (2.5) for continuous spectrum
* 2
AA [zﬁk‘m +2r K™ aoszp +1} =21 (37)

Based on the methodology of and
articles,where is considered

-] dr— 1 | .0y .du "
|mJ.uk (ru, (r)dr = W E U, o —U, g 0 (3.8)

one can show, that T parameter isintroduced from the lower limit of the
(3.8) integral as it was for the bound states and (3.8) is introduced from
the upper limit of thisintegral (For bound states wave function decrease
at large distances and we no analog of (3.7) relation).

b).Phase Shifts Calculation.

U, (1) =vkr { AK)J, (k) + BN, ()} (39)

Second term isregular at the origin for 0<P<1/2 and we keep it!
IlmR_— _—sr(kr—— +9)

utd (3.10)
S, =l +]j 2— P] 7l 2—arCth/ A (3.11)

or using (3.5) definition of SA parameter we obtain:
&, =[1+1/2—p| z/ 2-arcy(z. k™) (3.12)

In the literature is known only first term

B=0:7,=0 5§ =[| +1/2— IO] 7l 2 (3.13)
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A=0 q,=i°¢5§dd :@Stiﬂlz (3.14)

+gignin (3.14) is excluded, comparing it with asymptotic expression

N, (kr) =2/ zkr Sn(kr — prz/ 2—- 7/ 4)
Remarks: 1. From (3.12) we see that 5p is depended on the energy
K*=2E)for 7, ;’ﬁo’oo,so scale invariance is violated!
2
2. We considered V=V/r attractive potential, for which 5p >OAS

one see from (3.12) may be 5p <0 or we get repulsive potential! So

we see, that 7, parameter may change the NATURE of potential!
We have two possibilities:

From the Physical motivation restrict % parameter (Don't change
attractive potential by repulsive!) or as one see from (3.12) demand

[1+1/ 2—p| 7/ 2—arcig(z, k™) >0
Agree, that % can change potential nature!
Aol 601 (6f': 1=V A0S RS
S, =e* i (3.16)

o=4r/ kZZ(Z +1)dn’ 5
1=0

(3.17)
f(6) =12k (2 +1)f,R(cos6) (3.18)
1=0
1 1 g
f.—ﬂ(a —D—ﬂ(e -] (3.19)

o =4r(2A+1)|f [ (3:20)



Remarks:

1. 1(I+1)<2mV, (1.10).So in (3.15-3.20) one need SAE for | ,which
satisfy (1.10).(1=0 always satisfy it!)

2. Total cross section o is infinite for V="/r" in usua quantum

mechanics (7 = 0).We show, that for A=0 (T =10) and small k o
IS agan infinite, but in general case, when

é;)=[|+]/2—p] 7l Z_ardg(fpkzp)(i can become finitel This

problem need more careful investigation!
3. From (3.12) and (3.16) we have

S, = eZ[|+y2—P]ﬂ/2e—Zardgrpk2p
Or
1—iz k*°
S =S, :
SR S (3.21)

For 7,=0 or %=« S;have no poles, so V:—\él r have no bound states as

i 1P _
in usual quantum mechanics! But in the point 'Tpk =1 S have false
pole!

E=- T
= (3.22)
2m(z,)"
But - parameter in general may be complex
Z'—Z'l-I-IZ'2 (3.23)

where % describes absorption processes [16].For z-:ITZ(

) we obtain from (3.22) quasidiscret level
i
E=-—7 (3.24)
2m(z,) "
|V .Scattering length a



In [16] is calculated scattering length a for the following potentia in the
|=0 state

V,
V(r)———Q(R r) (4.1)

We now obtain more general formula using When r<R wave
functionis

AP+ BrY2 P 2my, <1 4 P=\/1/ 4-21V,

M= _

r2dnvinr+,), 2V, >1/ 4v=,/2n\V, -1/4 (4.2)
0 is parameter, when one have “falling” on the center and is
known in the literature
For r>R

=C(r-a) (4.3)

“Sewing” condition at r=R gives
(1— 2P)AR” +BR " (1+2P)
(1+ 2P)AR" +BR " (1- 2P)
S 1-2vetg(vIinR—y,) .
=R 2vetg(yInR—7,)’ 2mV, >1/4 (4-5)
When B=0 we get [ 16] article formula
(1— 2P) .
(1+ 2P)’

2mV, <1/4 (4.4)

(4.6)
As P<1/2, a<0 and it corresponds to attractive potential, but from (4.4) a
have no definite sign- we can’'t say one have attractive or repulsive
interaction!

now we define

r=—A/B (4.7)

_ar+h
- a,r+h, (4.8)
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a, =—(1- 2P)R*";b, = (1+ 2P)R*"

a, =1+ 2P)RP b, =—(1-2P) RF
In the region

(4.9)

T, <T<7, (4.10)
a>0 and we have repulsive interaction! V(r):—%e(R—r) IS attractive

potential and - parameter from (4.10) region can change it NATURE!
Again one have two alternatives :

a). From the physical motivation exclude (4.10) region.

b). Agreethat - can change interaction nature!

Remarks:
1). We (4.4) and (4.5) near 2mV0 =1/4 and get relation between
7 and 70
_r+l
2ctg 70" 71 (4.11)

2). Oyt = Ara?(r)=o(r) dependson 7! o >0demand restrict 7!

V.Scattering effective radios (2mVO <1/4)

0.0)
0=2] {ug(r)— ;(g(r)}dr (5.1)
where uO:C(r—a) (5.2
ArY2+P g U2+P.r R
X0= (5.3)
C(r-a);r>R

2 2(1-P)
r0=2/3C2{(R—a)3+a3}—82{mR2P+2—F\;(1_P)+TR2 (54)

_ C(R-a)
8= RJJZ—P—TRJJZ+P (55)

'y ="o(7) ismore complicated function, when a=a(z).

rO >0 demand restrict 7!
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= 4ra’(r) k2 = 2mE 5.6
1+a(1)[a(r)_rO(T)}k2+]J4azr02(T)k4’ m ( . )

VI.Model of Vaence electron

o)

__'0_a.
V= Y Vga>0 (6.1)

Notice that,this potential “naturally” appears for coulomb potential in
the Klein-Gordon equation. Following [17-W.Krolikowski; Bulletin De
L’ academics polonaise.Vol XV11.83(1979);18-
A.A.Khelashvili,T.P.Nadareishvili, Bulletin of Georgian Acad.Sci:Vol
164.n01(2001)] we obtain general solution of Schrodinger equation for
(6.1) potential

U= Clp]J2+Pe_p/2F (U2+P—1,1+2P; p)+

(6.2)
+C2p]j2_Pe_p/2F(1/2—P—/1,1—2P;p)
Where Pis given again by (1.8) and
p=2k-r; z:—i”:(“:—in; E>0; k=+2mE; n=ma/k (6.3)
SAE
Z'Zi(Zik)_ZP (6.4)
rll_r)noou~sn[kr+nln2kr (p-12)z/2 5cou|+5p} (6.5)
where
t _
5§oul =agl(U2+P-4) (6.6)
5 4O O—rn(2)2P F(l—2P)‘F(1/2+P—Z)‘ 67)
=dalC ; = .
p =A1E8 P e 2p)rw2-p-4)
_ ¢ _ st _
o=0p 5cou|+7r/2[l+1/2 P] (6.8)
|7Z'{|+1/2—P} F(1/2+ P+ﬂy) 2|arcth
_ 6.9
p=° r(/2-P-24)° (55
_ost1+1Q
Sp =SB 110 (6.10)

IQ=1ispolel

10
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r@z2-i-pP)  7p T@-2P). , |
F(1/2—;L+P)__(2mk)2pF(1+2P), k=v2mE;E<0  (6.11)

From (6.11) we get pure E (z =0) and Ea dd (7 =+0) eigenvalues

2 2
Etadd = 27 - (6.12)
’ 21/ 2+n, £P] 2{1/2+ ne J_r\/(l +1/2)2—2va}
I(I+1)<2mV0
[—1/2+ 1/4+2mv0] . w
1 & 1+16 st
f(e)_ﬂ{ > (2I+1)P,(c036’){8| 1_i6’—1}+[_1/2+1zl;1+zmvo](2|+1)F>|(cos9)[sI —1]}
f(0)= fVE + fS AE (6.13)
When V0—>oo,in the (6.13) leading term isfSE and for small V0 IS
fSAE
do _ 2 2 2 *
16=11©) _‘fVE‘ +‘fSAE‘ +2Reff fo, o (6.14)
p= 121722 2mv_ ~(1+1/2)- 70 6.15
= J0+122-2mVy = (1+1/2)- (6.15)
Wekeepinthiscasein fSAE only 1=0 term and get
do _ 1 7 [1+ 2(”V°)2m3sinze—zfzmvo\/ﬁcoszw L _00)}sin2f§AE -n 2??%‘“ X
dQ 7724k25in45 E E - k k®sin“ @

x{cos(n Insinzg— 20, — 2MV, 7t — S ) — 7MV,, }Z?m siné’cos(n Insinzg— 2MV,o7r — Sge =20 4 H

2

where the first term is usual Reserford formula modified for VE model
last two terms are caused by SAE procedure and are similar to the short
range interactions. So SAE can again play arolein potential nature! This
formalism can be used aso for =*,~~ scattering, where is used Klein-

Gordon eguation.

11
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VIII. Concluding remarks. Summary

0
potentialsin the region (1+1/ 2)2 > 2mVO (no “falling onto center!)

1. Our man result: We show, that for |im rdy —> -V ;(V >O)
r—0 0

it is necessary to keep second additional solution in the 0<P<1/2
interval (We have our variant of Landau mentioned paragraph!)
and it is also necessary to introduce self-adjoint extension r
parameter in both bound states and scattering problems.

2. Physical quantities E,a, (90 depend on 7 parameter and by this

reason physical picture is different then in usua quantum
mechanics! (As was mentioned above SAE can change nature of

potential, 5p became energy dependent for V:—VO/ r2, this

potential have quasidiscret level and so on.
three

1).It should be found another strong requirement in the quantum
mechanic mathematical formalism, which “destroys’ additiona
states!

2) If it isn't possible, try to ‘’'struggle’ against r parameter by

physica demands: 0> 0,0>0,don't change physical nature of

Interaction and so on.

3).Admit SAE existence and find new levels, &0 and so on. And

now it stay open the following question: Why the NATURE “select”
only standard states (r =0) yet?!

12
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