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Introduction

Action of a particle/string

Geometric action

S:M/ds:M/dT\/W

Polyakov action [Brink, Diveccia, Howe 76]

- Gt \M?
S—/dT[ o) 5

Dirac type action

A
S = /dT [pﬂab” —3 (9" pupy + M2)}

" = \g™ py, G’ + N2 M? =0
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String actions

Nambu-Goto action

1
S=— /decr\/(:i‘ 2= @) (@)
™
Polyakov action

1
S = i /deJ\/ﬁ heB (D, - Dpr)
T

Dirac type action

s=5 [ar [l &) - 06 + @)~ el )
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Particle in a static space-time

Static space-time metric tensor

_( Goox) 0
uv = ( 0 gmn(ﬁ) > Goo < 0

Space-time coordinates z# = (29, z).

The action of a particle in the first order formulation

) A
S = /dT [pu a4 3 (g””pup,, + MQ)}
The static gauge

The reduced action
|
S:/dT[pnm _§(p0)2:|

—po = E > 0 is the particle energy.
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The mass shell condition
9" pupy + M? =0
Time component g, = —e/, g0 = —e~ 7
The squared energy
E? = l™™(2) ppn + M2 f@

This function is associated with the Hamiltonian of a non-relativistic
particle moving in the potential M2 e/(*) in a curved background with the
metric tensor

hmn = e_fgmn

h™™(x) is the inverse metric

Py V™ = 6
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Quantization in the coordinate representation

Quantization in the coordinate representation

Scalar product with covariant measure
(Walyn) = [ dVav/h(z) Y3 (@
h(z) = det hyyp ().
The momentum operators p,, = —id,, — iﬁn log h
The energy square operator
2= _Ap+aRp(z) + M?ef@)
Ay, is the covariant Laplace operator

R4, is the scalar curvature.

How to fix a? [Dewitt, Bastianeli,...]
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Classical description of AdS particle

AdSy 4 is realized as a hyperboloid X4 X, = —R?
X4 A= (0,0,1,...,N) are coordinates of R% ¥~
Metric tensor on R n,p = diag(—1,—1,1,...,1)

Parametrization of the hyperboloid

X0 _ R sind 0 _ R cos 0 X _ Rz,
V1—a?’ V1—a?’ V1—a?’

with 22 := 2,2, < 1.
Induced metric tensor

_ R? ~1 0
.g/JZ/ - 1 _ :L'2 0 5mn + Tm Tn

1—x2

The polar angle 6 is interpreted as a time coordinate 6 = z°
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If a vector field V = V(x)"0,, generates space-time isometry
transformations
Ly uv = 0,

then
J =VHp, =V"(7, z)pn — V°(7, z) E(p, x)

is a Noether integral of the system.

The isometries of AdSy 41 are the SO(2, N) transformations
Vap(XY9) =065 Xp — 65 X4

The corresponding Noether integrals at 7 = 0 are

M2R2
E:JO’OZ\/pQ(p'x)2+1_$2, Jmn = Pm Tn — Pp Tm ,

Jno = Exy , JnOZ(p'x):En_pn'
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50(2, N) algebra
Zn = Jno —idno , Z;;:Jn()/—i-ijno ,
{E, Z,,} = —iZ, , {Zm, 2} = 2i0mn E — 2 -
The squared energy in AdS is given by

M?R?
E? = K"™(2) pmpn + 1= 2

with A" () = Opn — T T

Its inverse is the metric tensor of the N-dimensional unit semi-sphere

Ton T

hmn = Omn PR

Classical description of AdS particle 10/21



Coordinate representation for the AdS particle

Energy square operator

Ommn — TmT M? R?
2 _ _ 22 mn__ vmen _

E*=—\/1—22 0y, i Op+aN(N 1)+1—:z:2
Rotation operators Imn = (X 0n — n,0p)
The first boost generators Jnor = VE 2, VE
Commutation relation

(B2, Joo] = VE (N Ty — 2Vn) VE | (B2, Joo] = 2iJno B + Jno
The second boost generators Jno = iVE (Vn — % xn) ﬁ
_N-1
“T 4N
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The Hilbert space is given by the wave functions W (z) with the scalar
product

(U2|¥y 5(z) V1(z)

dN
) = / 4z
w2<1 V1 — x2
The lowering operators  Z,, = Jyor — tJno.

The ground state has to be a SO(N) scalar, which is annihilated by
Zn = n0" — Z.JnO-
N -1
(xn (Bo—=—5—) + Vn> W (%) =0,

The ground state wave function

E, N-1
Vg ~(1—a?)2 7
Since this function has to be an eigenfunction of E? with the eigenvalue

EZ, we find
N\? 1
M?*R?=(Fy——=| —=
(0 2) 4
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String theory in a static gauge

Open string action in the first order formulation

T d .
S = / dr / ?" (PMX“ — M(PPH + XXM — )\Q(PMX’“)>
0

Virasoro constraints  P,PH + X/ X" =0, P.X"H"=0
Static gauge X0+ Pyr =0, Py=0

The reduced action

S:/dT/ d"(mX’“-%&)
0 Y 2

Free-field Hamiltonian

i = 2/0 d7rg <P2+X,2>

String theory in a static gauge 13/21



The free fields on the (7,0) strip X*(7,0) = $¢*(7 +0) + 1% (1 — o)

k .
Mode expansion ¢F(2) =" +prz+i), 052 e
Canonical Poisson brackets
{p*,q'} =" {ag,,ab} =im 6™ 6y yn

The generators of conformal transformations

1 (dz . . - 1 o= R
Ly, = 2/0 % e ¢/(Z)2 = 5 Am—nQn
n=-—o0o
The Witt algebra {Lm,Ln} =i(m —n) Lyin

Constraints in modes
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The dynamical integrals

P [ e [T e pen
0 0

™ ™

Reduced dynamical integrals

kol
a® a
Pk = pk JH = prgl — phgl 41 Tondn
n
n#0
: k
1 a
P’ =p” = /2L, JOk:qukwLEZZ”L,n
n#0

Deformed boosts
0k __ JOk‘ i (0 ﬁ L L
g = S 00 Lt
p J22 \ni-ny

Poisson brackets of the form

{jOka Lm} = A’;n Lm
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Quantization in flat space-time

Ground state

aklpy =pk|p),  dElp) =0,

Virasoro generators Lo = %]52 + N, N =3 00_ndn

The Virasoro algebra

[Lins Ln] = (m — n) Lypin + lzféil'(77l

Physical states
Energy operator

Boost operators

L) =0,  Lyw) =0

P’ = /0?2 +2(N —a)

j0k|5’ N) _ quk+ 0 Z Z f(n1, ,n])

T'Ll, “ ])

n >0

- m)6m+n

Py,

Quantization in flat space-time

16/21



Action of boosts on the first excited level

sk - £(1)
Okj~ 1\ _ [ ko ip° if ko
T, 1) = (q p - 2pO+pOL—1a1> 7, 1)
Phys. conditions L1 7%|p, 1) =0, (7% TP, 1) =i|p, 1)
Solution fM =1, a=1

Second level calculations

ik ; i £(2) (L)
k.o 1P 1 g Lf g Lf k)=~
(q P o0 + EL—lal + 0 L_sa5 + 50 L—1L—1a2> P, 2)

1

(1) — _
! e+1

, f(2) — € , e = 2(p0)2 s D =26
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Connection to the covariant quantization
Physical states in covariant quantization
Lm||¢ph> =0 ) for m > O) and (LO - 1)H¢ph> =0 )

o . 1
Ly = Ly, — L2, with L0 =—-a% a

The physical states of static gauge quantization become physical states of
the covariant quantization.

The boost operators in the covariant quantization

0 k k0

a a a a

JOk_Ok_kO i -—nn _ “Y—n"n
=P4q pq § n

n
n>0

have no ordering ambiguity. From the expansion

a(lanO’ﬁ; 0, N> = Z f(’VZl,.--,n]')(pO) L(lnj LO ||p07ﬁ; OaN> 5

—nq
(n17"'7nj)

follows Fms) (p0) = pO fnams) (10
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AdS string in static gauge

Parametrization

v = /R?+ X2 sin(@/R), Y°=+/R2+X2cos(§/R), YF=XxF,

X2 .= Xkxk,
Action

S:/dT/ d—a [Pka—i—l(hklpkpl—ﬁ-fle/kX’l)} ,
0 T 2

The matrix
R? R2 Xk X!
ht = o3 50K ~ 753 2)2
R4+ X (R?+ X?)
corresponds to the induced metric tensor obtained by the projection of a
semi-sphere on a plane: the plane is tangent to the sphere at the pole and
the projection is made from the center of the sphere.
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Summary

We discussed the quantization of a particle in (N + 1)-dimensional static
spacetimes in the coordinate representation. The key point of this analysis
is the construction of the squared energy operator which has the form of a
non-relativistic particle Hamiltonian in a curved N-dimensional space.

The description of a quantum particle in terms of position dependent wave
functions seems to be most natural. But in order to respect the relativistic
principles, the generators for transformations involving time (energy,
boosts) become non-local.

The ordering ambiguities are fixed by the spacetime isometries.

For the isometry algebra of AdSy 41 we found a new representation in
terms of operators acting on functions depending on N-dimensional space
coordinates.
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We have proposed a new treatment of the bosonic strings in static gauge.
It has been shown that the string dynamics is D dimensional Minkowski
space can be described by D — 1 component conformal free-field theory,
restricted on the constraint surface L,, = 0, m # 0.

The structure of the boost operators has been found on the basis of
classical calculations. This structure defines the boosts up to some energy
dependent coefficients. These coefficients can be calculated to any
desirable level, but their closed form is still missing. Simple low level
calculations of the commutation relations of the boost operators define the
string mass spectrum and the space-time critical dimension.

We have shown the equivalence between the static gauge and the covariant
quantization. This equivalence shows that the coefficients we were looking
for in the static gauge quantization are just the expansion coefficients of
the oscillator excitations in terms of the Virasoro excitations.

AdS strings description in static gauge exhibits a new coset WZW
structure, which differs from the Pohlmeyer reduction.
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