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LQCD & EFT @ UB: factsheet

• Senior investigators: U.-G. Meißner, A. Rusetsky

• Postdocs: M. Döring, M. Mai, G. Rios

• Ph.D. Students: A. Agadjanov, D. Agadjanov

• External collaborators: V. Bernard (Orsay), C. Liu (Peking),
A. Khelashvili (Tbilisi), T. Nadareishvili (Tbilisi),
E. Oset (Valencia), G. Schierholz (DESY), . . .

• 3 Ph.D. theses were defended in 2012

• Grants:
– CRC 16 (Bonn – Bochum – Gießen)
– CRC 110 (Bonn – TU Munich – IHEP Beijing – Peking U.)
– Rustaveli DI/13/02 (Bonn – Tbilisi)

• Related research at UB

– C. Urbach (lattice QCD)
– H.-W. Hammer, U.-G. Meißner (nuclear physics on the lattice)
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Plan of the presentation

• Introduction: Resonances in lattice QCD

• Effective field theories in a finite volume

• Example 1: scalar resonances and quest for exotica

• Example 2: electromagnetic formfactor

• Example 3: 3-body problem in a finite volume

• Outlook
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Confinement

LQCD = ψ̄(iγµ(∂µ − ig T aAa
µ) −M)ψ − 1

4
F a

µνF
µνa
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




u

d

· · ·




 , M = diag (mu,md, · · · )

+ + + ...

µ
dαs

dµ
= −αs

2π
(β0αs + · · · ) , αs =

g2

4π

β0 =
1

3
(33 − 2Nf )

αs(E) =
12π

(33 − 2Nf ) ln(E2/Λ2)

→֒ Λ is the RG-invariant QCD scale
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First-principle calculations in QCD

• In QCD, all physical information is encoded in the Green
functions

• Path-integral representation (Euclidean space):

〈0|O1(x1) · · ·On(xn)|0〉 =
1

Z

∫

dψdψ̄dAµ O1(x1) · · ·On(xn)e−SQCD

The gauge-invariant operators Oi(xi) are built of the fields ψ, ψ̄, Aµ

a

L

L = Na, Lt = Nta, VE = LtL
3

• On a finite Euclidean lattice, the path integral transforms into a
multiple integral

→֒ can be evaluated by using Monte-Carlo technique
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Discretization of the continuum theory

• Derivative: ∂µψ(x) = 1

a
(ψ(x+ aµ̂) − ψ(x))

• Link variable: U(x, µ) = exp(−iaAa
µ(x)Ta)

x+a µ̂x

µU(x,   )

• Covariant derivative: ∇µψ(x) = 1

a
(U(x, µ)ψ(x+ aµ̂) − ψ(x))

• Plaquette: Pµν(x) = U(x,mu)U(x+ aµ̂, ν)U†(x+ aν̂, µ)U†(x, ν)
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ν
x

• Wilson action: explicitly gauge-invariant for a 6= 0

SW = −a4
X

x

„

1

2
(ψ̄γµ∇µψ −∇µψ̄γµψ) + ψ̄Mψ +

a

2
∇µψ̄∇µψ

«

+
1

g2

X

xµν

Tr (1 − Pµν)
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Spectrum of QCD at low energy

Only colorless asymptotic states (confinement!)

• Mesons qq̄

• Baryons qqq

• Exotica:
• Tetraquarks qqq̄q̄ ?
• Pentaquarks qqqqq̄ ?
• Glueballs gg, ggg, · · · ?
• Hybrids qq̄g ?
• etc, etc, etc

Most of the observed particles are resonances!
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Calculation of the masses of stable particles

• Field operators, carrying given quantum numbers:

Φ(t) =
∑

x

Φ(x, t)

• Correlator: G(t) = 〈0|Φ(t)Φ†(0)|0〉 → calculate using MC

• For large values of t:

G(t) =
∑

n

〈0|eHtΦ(0)e−Ht|n〉〈n|Φ†(0)|0〉 → e−Mt|〈0|Φ(0)|1〉|2

• The mass of a stable particle, which corresponds to the lowest
energy level, is extracted directly in Euclidean space

• Extraction of the excited level spectrum is also possible

• However, resonance masses can not be extracted this way!

A. Rusetsky, Tbilisi State University, 14 March 2013 – p.8



Resonances in Quantum Field Theory

• Resonances are characterized by their mass, their lifetime, . . .

• These are the intrinsic properties of a resonance that should not
depend neither on a particular experiment nor a particular
theoretical model which is used to describe the data

→֒ Resonances correspond to S-matrix poles on the
unphysical Riemann sheets

Resonance

Threshold

Bound state

• Resonances do not show up in the spectrum of the Hamiltonian.
Standard procedure on the lattice is not applicable!
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Lüscher’s approach

M. Lüscher, lectures given at Les Houches (1988); NPB 364 (1991) 237, · · ·

• Lattice simulations are always done at a finite box size L

It is assumed: R−1L ≃ML≫ 1 .

R: the range of interaction

a

L

• Momenta are small: p ≃ 2π/L≪ the lightest mass

• Finite-volume corrections to the energy levels are only
power-suppressed in L

• Studying the dependence of the energy levels on L gives the

scattering phase in the infinite volume ⇒ Resonances

Non-relativistic effective field theories (NREFT) can be used
to study the energy spectrum in a box
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Very low energies: non-relativistic EFT

• Very low energies: p≪M ,
√

M2 + p2 = M + p2

2M + · · ·
• Explicit anti-particle degrees of freedom can be omitted

LNR = Φ†

(

i∂t −M +
∇2

2M
+ · · ·

)

Φ + d0 Φ†Φ†ΦΦ + derivatives

⇒ Lippmann-Schwinger equation: T = V + V G0T

Finite volume

Periodic boundary conditions:

ϕ(x + Lei, t) = ϕ(x, t)

k = 2π
L n, n ∈ Z

3
-L/2 L/2

The same Feynman rules, but
∫

d4k

(2π)4
→

∫
dk4

2π

1

L3

∑

k
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The Lüscher equation (NPB 364 (1991) 237)

Lippmann-Schwinger equation, infinite volume, NREFT (dim.reg.):

T = V + V G0T , G0 =
ip

8πE
, V (p, p) =

8πE

p
tan δ(p)

Finite volume: Loops modified, Lüscher’s zeta-function emerges

∫
d3p

(2π)3
→ 1

L3

∑

p

, loop =
ip

8πE
→ Z00(1; qr)

4π3/2LE
q =

pL

2π

Poles in the LS equation = spectrum of the Hamiltionan

→֒ det (δll′δmm′ − tan δl(s)Mlm,l′m′) = 0

• Mlm,l′m′ is a linear combination of Zlm(1; q2)

• scattering phases δl(p) from the finite-volume energy spectrum

• Beware: partial-wave mixing occurs in a finite volume!
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Energy levels in the presence of a narrow resonance

0 2 4 6 8
0

5

n=1

n=2
n=3
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L

p

pR

⇒ Lüscher formula predicts an irregular behavior of the levels in the
vicinity of a narrow resonance: avoided level crossing

Resonances are not described by a single energy level!
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Where are the resonance poles?

Assume effective range expansion:

p cot δ(p) = A0 +A1p
2 + · · · , cot δ(pR) = −i

√

⇒ A0, A1, · · · are measured on the lattice

⇒ Resonance pole pR in the complex momentum plane
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Phase shift for the ρ-meson: S. Prelovsek et al., arXiv:1111.0409
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Ex. 1: scalar mesons

V. Bernard, M. Lage, U.-G. Meißner and AR, JHEP 1101 (2011) 019

f0(980): Two-channel equation with 1 = KK̄, 2 = ππ

T11 = V11 + V11ip1T11 + V12ip2T21

T21 = V21 + V21ip1T11 + V22ip2T21

Resonance pole(s) are determined from the secular equation:

1 − ip1V11 − ip2V22 − p1p2(V11V22 − V 2
12) = 0

Finite volume: multi-channel Lüscher equation: ipi →
2√
πL

Z00(1, q
2
i )

⇒ Find Vij(s) from the lattice data: one equation for V11, V12, V22

⇒ Find the position of the pole(s)

⇒ Nature of a resonance: molecule or quark compound?
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Molecular states: resonance or threshold?
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Using Unitarized Chiral Perturbation Theory to produce energy levels
M. Döring, U.-G. Meißner, E. Oset and AR, EPJA 47 (2011) 139
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Changing the input . . .
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• Weaker coupling to the KK̄ channel, f0(980) disappears

• Avoided level crossing still occurs at the same place
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Unitary ChPT in a finite volume

M. Döring, U.-G. Meißner, E. Oset and AR, EPJA 47 (2011) 139, arXiv:1205.4838

→֒ Use dynamical input from unitary ChPT at lowest order:
approximate potentials by the polynomials in s:

V (s) = V0 + V1(s− st) + · · ·

→֒ Fit the parameters of the potential to the lattice data

→֒ Predict the position of the poles by using scattering equations

→֒ Useful: twisted boundary conditions Φ(x+ L) = eiθΦ(x)

Some further developments:

M. Döring, J. Haidenbauer, U.-G. Meißner and AR, EPJA 47 (2011) 163

M. Döring and U.-G. Meißner, JHEP 1201 (2012) 009

A. M. Torres, L. R. Dai, C. Koren, D. Jido and E. Oset, PRD 85 (2012) 014027

M. Albaladejo, J.A. Oller, E. Oset, G. Rios, L. Roca, arXiv:1205.3582
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Extraction of the f0(980) pole position, CM frame
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Set 2

Set 1
Set 2’

13 (synthetic) data points in each set:

Set 1: Energy levels 2+3, periodic b.c.

Set 2: Energy level 2, periodic + antiperiodic b.c.

Set 2’: Set 2 + statistical error
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Ex. 2: Matrix elements with the resonances

D. Hoja, U.-G. Meißner and AR, JHEP 1004 (2010) 050

V. Bernard, D. Hoja, U.-G. Meißner and AR, JHEP 1209 (2012) 023

A consistent definition of a formfactor of an unstable particle in QFT

2 2P  , Q        sR

QP +   ...

Example: electromagnetic formfactor of the ∆-resonance:

• Gauge independent

• Invariant under field redefinitions

Note: Definitions which do not imply analytic continuation, do not
have the above properties

How does one perform analytic continuation of the lattice data?
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Resonance matrix elements on the lattice

Field operators with resonance quantum numbers:

OP(t) =
∑

x

e−iPxO(x, t) ,

Three- and two-point functions on the lattice:

Ṽµ(P, t′;Q, t) = 〈0|TOP(t′)Jµ(0)O†
Q(t)|0〉 ,

D(P, t) = 〈0|TOP(t)O†
P(0)|0〉 .

Extraction of the formfactor (ground-state):

〈P|Jµ(0)|Q〉0 = lim
t′→∞
t→−∞

Ṽµ(P, t′;Q, t)

s

D(Q, t′)D(P, t)

D(Q, t)D(Q, t′ − t)D(P, t− t′)D(P, t′)
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Infinite-volume limit of the matrix elements

• For stable particles, the limit L→ ∞ exists

• Both methods give the matrix element sandwiched by the
eigenvectors of the Hamiltonian. The resonances, however, do
not correspond to a single energy level. How does one calculate
the infinite-volume limit for these matrix elements?

0 2 4 6 8
0

5

fixed energy: no large L limit in matrix elements

n=1

n=2
n=3
n=4
n=5

fixed level: resonance decays

L

p

• Fixed energy levels decay in the limit L→ ∞
• The matrix elements at fixed energy oscillate in the limit L→ ∞
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Framework: non-relativistic EFT with the external fields

M 1
(1)

= Γ1

Γ2

M 1
(2)

= Γ1

M 1
(3)

= Γ1

Γ2

M 1
(4)

= Γ1

Γ2

+

...

...

M 2 =

...

... ...

+

+( )

... ( + )

( )

Z

• Use NREFT in a finite volume to calculate the matrix element

• Extract the matrix element in the infinite volume
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Loop graph: analytic continuation (rest system)

��
��
��
��

=
m2 − p2

8πE3p2
p cot δ(p)

︸ ︷︷ ︸

(polynomial in p2)/p2

+
1

32πEp
(1 + cot2 δ(p))ηφ′(η)

︸ ︷︷ ︸

culprit

p = pn =

√

E2
n

4
−m2 , tanφ(η) =

π3/2η

Z00(1; η2)
, η =

pL

2π

• A polynomial in p2, can be analytically continued p2 → p2
R

• An analytic continuation of ηφ′(η) is ambiguous
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EFT framework for extracting resonance formfactors

• Measure the quantities 〈P|Jµ(0)| −P〉n on the lattice, Breit frame

• Vnn(p) =
δ′(p) + φ′(q)

4 sin2 δ(p)

L3En

2π
√

E2
n − P2

︸ ︷︷ ︸

Lüscher-Lellouch factor

〈P|Jµ(0)| −P〉n

→֒ Form the linear combination: bn,m(p,P) are universal factors

V̄ (p) =
bm(p,P)Vnn(p) − bn(p,P)Vmm(p)

bn(p,P) − bm(p,P)

→֒ Effective-range expansion for V̄ (p) holds

V̄ (p) =
V−1

p2
+ V0 + V1p

2 + · · · → V−1

p2
R

+ V0 + V1p
2
R + · · ·

• Resonance formfactor: 〈P|Jµ(0)| −P〉 = BR
︸︷︷︸

w.f. norm.

V̄ (pR)
√
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Ex. 3: Three particles in a finite volume

K. Polejaeva and AR, EPJA 48 (2012) 67

The problem:
finite-volume effects in the spectrum of the Roper resonance

~60% ~40%
N N

π
π

π

Consider the problem first in the NR Quantum Mechanics:

• No Lorentz-invariance

• No 4- and more particle states

• No 2- and 3-particle bound states

H =
3∑

i=1

H
(i)
0 + H22 + H23 +h.c.( )
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The Central problem in the 3-body scattering
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r r
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��
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�
�

• In case of 2 particles: r ≫ R, when particles are near the walls

• In case of 3 particles: it may happen that r ≫ R, r1 ≃ R, when
the particles are near the walls

The problem with the disconnected contributions: is the
finite-volume spectrum in the 3-particle case determined

solely through the on-shell scattering matrix?
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Naive analog of Faddeev equations in a finite volume

R4β = θ4GF

„

θβ +
3

X

γ=1

Rγβ

«

Rαβ = θαGFθβ + θαGF

„ 3
X

γ=1

(1 − δαγ)Rγβ + R4β

«

Rα4 = θαGF

3
X

γ=1

(1 − δαγ)Rγ4 + θαGFR44

R44 = θ4 + θ4GF

3
X

γ=1

Rγ4

θα = Kα + KαGFθα , θ4 = K4 + K4GFθ4
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Disconnected contributions

Naive Faddeev equations in a finite volume incorrect due to the
presence of the disconnected contributions:

θα θα θα
θβ θβ

a b

• One iteration gives a tree diagram: no finite-volume effects

• The term θαG
Fθβ in the naive Faddeev equations superfluous

• Dropping this term, the Born series of the Faddeev equations in
a finite volume are shown to coinside order by order with that of
the original Lippmann-Schwinger equation

→֒ Despite the presence of the disconnected contributions, the
energy spectrum of the 3-particle system in a finite box is still
determined by the on-shell scattering matrix elements in the
infinite volume
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Outlook

• Exotic scalar mesons with the partially twisted boundary
conditions (D. Agadjanov)

• The decay ∆ → Nγ on the lattice (A. Agadjanov)

• Exotic molecular states of D,Ds and π,K mesons (G. Rios)

• Three-particle problem in a finite volume (M. Döring)

• Quark mass dependence of the resonance parameters
(in coll. with J. Nebreda and J. J. Pelaez; G. Schierholz)

• . . .
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