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LOQCD & EFT @ UB: factsheet

e Senior investigators: U.-G. Meil3ner, A. Rusetsky
e Postdocs: M. Ddring, M. Mai, G. Rios
e Ph.D. Students: A. Agadjanov, D. Agadjanov

e External collaborators: V. Bernard (Orsay), C. Liu (Peking),
A. Khelashvili (Thilisi), T. Nadareishvili (Thilisi),
E. Oset (Valencia), G. Schierholz (DESY), ...

e 3 Ph.D. theses were defended in 2012

e Grants:
— CRC 16 (Bonn — Bochum — Giel3en)
— CRC 110 (Bonn — TU Munich — IHEP Beljing — Peking U.)
— Rustaveli DI/13/02 (Bonn — Thilisi)

e Related research at UB

— C. Urbach (lattice QCD)
— H.-W. Hammer, U.-G. Meil3ner (nuclear physics on the lattice)
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Plan of the presentation

¢ Introduction: Resonances in lattice QCD

o Effective field theories in a finite volume

e Example 1: scalar resonances and quest for exotica
e Example 2: electromagnetic formfactor

e Example 3: 3-body problem in a finite volume

e Outlook
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—> A is the RG-invariant QCD scale
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First-principle calculations in QCD

e In QCD, all physical information is encoded in the Green
functions

e Path-integral representation (Euclidean space):
1 _
0101 (1) - Ou(e)|0) = 5 [ d6didA, Os(w) -+ Onla)e 5o

The gauge-invariant operators O, (x;) are built of the fields v, v, A,

L = NCL, Lt — Nt&, VE — LtLS

a

e On afinite Euclidean lattice, the path integral transforms into a
multiple integral

— can be evaluated by using Monte-Carlo technique
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Discretization of the continuum theory

o Derivative: 0,9 (z) = 1 (v(z + app) — ¥(z))
U(x, B
e Link variable: U(x, u) = exp(—iaA?, 0 (x)T?) —<—s
X x+apl

o Covariant derivative: Vv, y(z) = 1 (U(z, p)¢(z + ap) — ()

e Plaquette: P,,(z) = U(z, mu)U(z + afi, v)UT (z + ai, p)UT (z,v)

MTE — Fuy

X =

\Y

e Wilson action: explicitly gauge-invariant for a # 0
Sw = -—a* Z( WYYV — Vubyu) + pMip + — VMbVMb)

u ZTr(l— )

Ty
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Spectrum of QCD at low energy

Only colorless asymptotic states (confinement!)

e Mesons qq
e Baryons qqq

e Exotica:
e Tetraquarks qqqq ?
e Pentaquarks gqqqqg ?
e Glueballs gg, ggg, --- ?
e Hybrids qgg ?
e efc, efc, etc

Most of the observed particles are resonances!
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Calculation of the masses of stable particles

e Field operators, carrying given quantum numbers:

O(t) =) P(x,t)

e Correlator: G(t) = (0|®(t)®'(0)|0) — calculate using MC

e For large values of ¢:

G(t) =) (0le™* @(0)e™ ! |n)(n|®*(0)[0) — e~ **[(0]@(0)|1)[

n

e The mass of a stable particle, which corresponds to the lowest
energy level, is extracted directly in Euclidean space

e Extraction of the excited level spectrum is also possible

e However, resonance masses can not be extracted this way!
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Resonances in Quantum Field Theory

e Resonances are characterized by their mass, their lifetime, ...

e These are the intrinsic properties of a resonance that should not
depend neither on a particular experiment nor a particular
theoretical model which is used to describe the data

— Resonances correspond to S-matrix poles on the
unphysical Riemann sheets

Threshold

—> —
Bound state \A.Resonance

e Resonances do not show up in the spectrum of the Hamiltonian.
Standard procedure on the lattice is not applicable!
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LUscher’s approach

M. Luscher, lectures given at Les Houches (1988); NPB 364 (1991) 237, - - -

e Lattice simulations are always done at a finite box size L

It is assumed: R 'L~ML>1.

R: the range of interaction L

e Momenta are small: | p ~ 27 /L < the lightest mass

e Finite-volume corrections to the energy levels are only
power-suppressed in L

e Studying the dependence of the energy levels on L gives the
scattering phase in the infinite volume = | Resonances

Non-relativistic effective field theories (NREFT) can be used
to study the energy spectrum in a box
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Very low energies: non-relativistic EFT

o Very low energies: p < M, \/M? +p2 = M + £ + - -
e Explicit anti-particle degrees of freedom can be omitted
2

\V4
Lyg = ®! (i@t M+ Wi +---)<I>+d0 OTDT DD + derivatives

— Lippmann-Schwinger equation: T =V + VGyT

Finite volume

Periodic boundary conditions:

p(x + Le;, t) = p(x,1)

__ 27 3
k=5n nci L L/2

d*k dks 1
The same Feynman rules, but / M-
(2m)4 2m L3 -
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The Luscher equation (NPB 364 (1991) 237)

Lippmann-Schwinger equation, infinite volume, NREFT (dim.reg.):

1p SmE

— T — _
T=V+VG,T, Go ok V(p,p) . tan d(p)

Finite volume: Loops modified, Lischer’s zeta-function emerges

d°p 1 ip  Zoo(L;qr) pL
loop = ! S st
/ 2n)F I3 Ep: P=%E  am2LE 1T on

Poles in the LS equation = spectrum of the Hamiltionan
— det (5”/5mm/ — tan 5Z(S)Mlm,l’m’) =0

e My, 1S @ linear combination of Z;,,(1; ¢*)
e scattering phases §;(p) from the finite-volume energy spectrum

e Beware: partial-wave mixing occurs in a finite volume!
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Energy levels in the presence of a narrow resonance

— Luscher formula predicts an irregular behavior of the levels in the
vicinity of a narrow resonance: avoided level crossing

> O O S5 O

R N Wbh O

L

Resonances are not described by a single energy level!
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Where are the resonance poles?

Assume effective range expansion:

pcot §(p) = Ag + A1p* + -, cot 0(pr) = —i \/

= Ay, Aq,--- are measured on the lattice

= Resonance pole pr In the complex momentum plane
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Phase shift for the p-meson: S. Prelovsek et al., arXiv:1111.0409
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Ex. 1: scalar mesons

V. Bernard, M. Lage, U.-G. Meil3ner and AR, JHEP 1101 (2011) 019

f0(980): Two-channel equation with |1|= KK, |2|=n=~

Ty = Vit +Virpi Ty + VigipaTo
To1 = Vor 4+ Voripi T + VagipaTa

Resonance pole(s) are determined from the secular equation:

1 —ip1 Vi1 — ipaVas — p1p2(Vi1Vag — Vi5) = 0

. . 5 . 2
Finite volume: multi-channel Lischer equation: ip; — —— Zyo(1, q?)

/L

= Find V;(s) from the lattice data: | one equation for V;;, V12, Vs

= Find the position of the pole(s)

= Nature of a resonance: | molecule or quark compound?
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Molecular states: resonance or threshold?
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Using Unitarized Chiral Perturbation Theory to produce energy levels
M. Ddring, U.-G. Meil3ner, E. Oset and AR, EPJA 47 (2011) 139
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Changing the input ...

1400 — : . | I
1300 - —_— Input withf, (980) | _|

- — — inputw/of (980) | |
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e Weaker coupling to the KK channel, f,(980) disappears
e Avoided level crossing still occurs at the same place
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Unitary ChPT in a finite volume

M. Doéring, U.-G. Meil3ner, E. Oset and AR, EPJA 47 (2011) 139, arXiv:1205.4838

— Use dynamical input from unitary ChPT at lowest order:
approximate potentials by the polynomials in s:

Vis)=Vo+Vi(s—s¢) +---

— Fit the parameters of the potential to the lattice data
— Predict the position of the poles by using scattering equations
—> Useful: twisted boundary conditions ®(z + L) = ¢ ®(x)

Some further developments:

M. Déring, J. Haidenbauer, U.-G. Meil3ner and AR, EPJA 47 (2011) 163

M. Ddring and U.-G. Meil3ner, JHEP 1201 (2012) 009

A. M. Torres, L. R. Dai, C. Koren, D. Jido and E. Oset, PRD 85 (2012) 014027
M. Albaladejo, J.A. Oller, E. Oset, G. Rios, L. Roca, arXiv:1205.3582
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Extraction of the  f(980) pole position, CM frame

7 : B
77 Set2 7 1

[HEY
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13 (synthetic) data points in each set:

Set 1: Energy levels 2+3, periodic b.c.

Set 2: Energy level 2, periodic + antiperiodic b.c.

Set 2': Set 2 + statistical error
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Ex. 2: Matrix elements with the resonances

D. Hoja, U.-G. Meil3ner and AR, JHEP 1004 (2010) 050
V. Bernard, D. Hoja, U.-G. Meil3ner and AR, JHEP 1209 (2012) 023

A consistent definition of a formfactor of an unstable particle in QFT

Example: electromagnetic formfactor of the A-resonance:

e Gauge independent
e Invariant under field redefinitions

Note: Definitions which do not imply analytic continuation, do not
have the above properties

How does one perform analytic continuation of the lattice data?
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Resonance matrix elements on the lattice

Field operators with resonance quantum numbers:

Op(t) =) e "P*O(x,t),

X

Three- and two-point functions on the lattice:

V(P t':Q,t) = (0]TOp(t')J,.(0)04(£)]0)

D(P,t) = (0|TOp(t)OL(0)|0).

Extraction of the formfactor (ground-state):

<P|JM(O>|Q>0: /hm VM(Pat/;Qat)

t"—00
t— —o0

D(Q,t)D(P, 1)
D(Q,t)D(Q,t —t)D(P,t — t)D(P,t')
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Infinite-volume limit of the matrix elements

e For stable particles, the limit L — oo exists

e Both methods give the matrix element sandwiched by the
eigenvectors of the Hamiltonian. The resonances, however, do
not correspond to a single energy level. How does one calculate
the infinite-volume limit for these matrix elements?

fixed energy: no Mrge L limit in matrix elements

=
N
[0}
Q
@
2
8.
»
of
>0 O 3 3 35
1 11 I
= N WA O

e Fixed energy levels decay in the limit L — oo
e The matrix elements at fixed energy oscillate in the limit L — oo
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Framework: non-relativistic EFT with the external fields
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e Use NREFT in a finite volume to calculate the matrix element
e Extract the matrix element in the infinite volume
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Loop graph: analytic continuation (rest system)

P pcoté(p )+ Sy (<ot S0 (0
- SmwE3p? b 32mEp PIne AN
(polynomig in p2)/p cuTBrit
po= B mt ot = =
— —m an = —
Zoo(l U ) g 2T

e A polynomial in p?, can be analytically continued p* — p%
e An analytic continuation of 7¢’(7) IS ambiguous
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EFT framework for extracting resonance formfactors

e Measure the quantities (P|J,(0)| — P),, on the lattice, Breit frame

' (p)+¢'(q)  L°Ey
4sin®§(p) 2n\/E2 — P2

7

N

Luscher-Lellouch factor

— Form the linear combination: b, ,,(p, P) are universal factors

_ B bin (P, P)Viun (p) — bn(p, P) Vi (D)
Vi) = b (0. P) — by (p, P)

—> Effective-range expansion for V(p) holds

V. V.
V(p):p—21+Vo—|-V1p2+°“—>p—21—|-Vo—|-V1;02R—|-'“
R

e Resonance formfactor: (P|J,(0)] —P)= Br V(pr) \/
——

w.f. norm.
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Ex. 3: Three particles in a finite volume

K. Polejaeva and AR, EPJA 48 (2012) 67

The problem:
finite-volume effects in the spectrum of the Roper resonance
Tt
m T
vl i
~60% ~40%

Consider the problem first in the NR Quantum Mechanics:

e No Lorentz-invariance
e NoO 4- and more particle states
e No 2- and 3-particle bound states

3
H=Y 8+ () + ( {Ha}— +hc)
1=1
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The Central problem in the 3-body scattering

O\r‘l
L L

R R

2 particles 3 particles

e In case of 2 particles: » > R, when particles are near the walls

e In case of 3 particles: it may happen thatr > R, r; ~ R, when
the particles are near the walls

The problem with the disconnected contributions: is the
finite-volume spectrum in the 3-particle case determined
solely through the on-shell scattering matrix?
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Naive analog of Faddeev equations in a finite volume

3
R4g = 04Gf <95 + Z R7g>
v=1
3
Rag = HaGFeﬁ + 0. GF (Z(l — 5047)R,75 + R4g>
v=1
3
Ra4 — OaGF Z(l - 5047)Rfy4 + OozGFR44
v=1
3
Rias = 04+ 04Gp Z R4
~v=1

0. = Ko+ KoGEb,, 0, =Ky +KysGgOy
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Disconnected contributions

Naive Faddeev equations in a finite volume incorrect due to the
presence of the disconnected contributions:

eO( 6(1 eO(
Op Op

a b

e One iteration gives a tree diagram: no finite-volume effects

e The term 6,G" 65 in the naive Faddeev equations superfluous

e Dropping this term, the Born series of the Faddeev equations in
a finite volume are shown to coinside order by order with that of
the original Lippmann-Schwinger equation

— Despite the presence of the disconnected contributions, the
energy spectrum of the 3-particle system in a finite box is still
determined by the on-shell scattering matrix elements in the
Infinite volume
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Outlook

e EXxotic scalar mesons with the partially twisted boundary
conditions (D. Agadjanov)

e The decay A — N~ on the lattice (A. Agadjanov)
e EXxotic molecular states of D, D, and 7w, K mesons (G. Rios)
e Three-particle problem in a finite volume (M. DGring)

e Quark mass dependence of the resonance parameters
(in coll. with J. Nebreda and J. J. Pelaez; G. Schierholz)

A. Rusetsky, Thilisi State University, 14 March 2013 — p.30



	sf �f LQCD & EFT @ UB: factsheet
	sf �f Plan of the presentation
	sf �f Confinement
	sf �f First-principle calculations in QCD
	sf �f Discretization of the continuum theory
	sf �f Spectrum of QCD at low energy
	sf �f Calculation of the masses of stable particles
	sf �f Resonances in Quantum Field Theory
	sf �f L"uscher's approach
	sf �f Very low energies: non-relativistic EFT
	sf �f The L"uscher equation (NPB 364 (1991) 237)
	sf �f Energy levels in the presence of a narrow resonance
	sf �f Where are the resonance poles?
	sf �f �oldmath Ex. 1: scalar mesons 
	sf �f �oldmath Molecular states: resonance or threshold?
	sf �f �oldmath Changing the input $ldots $
	sf �f Unitary ChPT in a finite volume
	sf �f Extraction of the �oldmath $f_0(980)$ pole position, CM frame
	sf �f Ex. 2: Matrix elements with the resonances
	sf �f Resonance matrix elements on the lattice
	sf �f Infinite-volume limit of the matrix elements
	sf �f Framework: non-relativistic EFT with the external fields
	sf �f Loop graph: analytic continuation (rest system)
	sf �f EFT framework for extracting resonance formfactors
	sf �f Ex. 3: Three particles in a finite volume
	sf �f The Central problem in the 3-body scattering
	sf �f Naive analog of Faddeev equations in a finite volume
	sf �f Disconnected contributions
	sf �f Outlook

