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Toda field theory

Review of Toda field theory

The action of the s/(n) conformal Toda field theory on
two-dimensional surface with metric g,5 and associated to it scalar
curvature R has the form

n—1
A= /( (0200pp) —HLZe ek‘p—i—(Q ) )fdz

k=1
(1.1)
Here ¢ is the two-dimensional (n — 1) component scalar field
©=(p1...Pn1):

n—1
Y = Zgo,-e,- (1.2)
i

where vectors ey are the simple roots of the Lie algebra s/(n), b is
the dimensionless coupling constant, p is the scale parameter called
the cosmological constant and (e, ) denotes the scalar product.

Gor Sarkissian Yerevan State University, Armenia

AGT correspondence and semiclassical limit of conformal blocks



Toda field theory

Review of Toda field theory
If the background charge @ is related with the parameter b as
1
Q= <b+ b>p=qp (1.3)

where p is the Weyl vector , then the theory is conformally
invariant. The Weyl vector is

szZe:Zw; (1.4)

e>0 i

where w; are fundamental weights, such that (w;, ;) = dj;.

Conformal Toda field theory possesses higher-spin symmetry: there

are n — 1 holomorphic currents W*(z) with the spins

k =2,3,...n. The currents Wk(z) form closed W, algebra, which

contains as subalgebra the Virasoro algebra with the central charge
c=n—-1+12Q°>=(n— 1)1+ n(n+1)(b+b"1)2) - (1.5)
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Toda field theory

Review of Toda field theory

Primary fields of conformal Toda field theory are the exponential
field parameterized by a (n — 1) component vector parameter «,

n—1
a=3"" awj,

V, = el®®) (1.6)
They have the simple OPE with the currents W¥(z). Namely,

W(k)(a) Vo(z, 2)
(€ —2)k

The quantum numbers W(k)(a) possess the symmetry under the
action of the Weyl group W of the algebra s/(n):

Wk(g)Va(z,Z) = (1'7)

wf(a) = w(Q + 8(a — Q)), seW (1.8)
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Toda field theory

Review of Toda field theory

In particular

(,2Q — )
2

is the conformal dimension of the field V,,. Eq. (1.8) implies that

the fields related via the action of the Weyl group should coincide

up to a multiplicative factor. Indeed we have

w®(a) = Ala) = (1.9)

Rs(@)Vo1s(a-q) = Va (1.10)

where Rz(a) is the reflection amplitude [Fateev, hep-th/o103014).
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Toda field theory

Light asymptotic limit

Denote ¢ = bey.

n—1
_ 1 2 2N gled) | 42
S= 8b27r/ [(8¢) + 8mwub Ze d°x (1.11)

k=1

In the light asymptotic limit we again take b — 0. Thus ¢ — oo.
We set a = bn. In this limit the conformal weight is finite

limp,,0A(bn) = (1, p) .- (1.12)
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SL(3) Toda field theory

W-algebra
In components:
[Lms Lol = (m = MLmsn+ 35(0° = Moo (22)
[Lp, Win] = (20 — m)Winsn (2.2)
L B A
(Wa, War] = 55 (0* = 1)(n* = )65, + (2.3)
16 A L 2 3
22+5C(n—m) m+n + (n— m) E(n+m—|— Y(n+m+3)—
F(n+2)(m + 2)) Lotm

where Ay =322 ¢ Likn—k : +2xaln, xo = (L+1)(1 — /) and
X2/+1 = (2 + /)(]. — /)
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SL(3) Toda field theory

W-algebra

Note that modes annihilating the central extension term: Lg, Li1,
Wy, Wiq, Wi, form the S/(3) algebra. [P.Bowcock and G.M.T.Watts
hep-th/9111062]

The corresponding term for the spin s current W) is

WO ()W) (w) = (2.4)

In components

W, WS~ c(n— (s = 1))+ (n+ (s = 1))dpm + -+ (25)

what implies that we have 2s — 1 components with the vanishing

central term: Wfs()sfl), .. W((sszl).
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SL(3) Toda field theory

The light limit in s/(3)

| () e ) - (26)

(f4, 54) rn, 51)
Zoo Z2ntit (B)i(=B+r)n(Nnti (@)j(=a+5)n(8)n+;

n,ij nliljl(r+s—1), (M nti (8)ntj
where
1 r
o= tsts—r—r), (a)n:(‘;(;n) (2.7)
1
6:§(sl+52—5—r1+r) (2.8)
Yy=a—si+r, d=B—-s1+s (2.9)

Gor Sarkissian Yerevan State University, Armenia

AGT correspondence and semiclassical limit of conformal blocks



SL(3) Toda field theory

The light limit in s/(3)
Com pUted in [Poghosyan, Poghossian, Sarkissian, arXiv:1602.04829]
L (r3,0) (0,s2) ]
.| (m5e) ) | (210)
k+/2n m ,2k+m+n

Z Zk'/'n' N (r+s—-1)

k,n,m=0 |= k+m
(A)m(r = A2)i(A2 + S = Dk—tim (Bi) ks n(B2) ktn
(r)i (S)k—1+n
where

1 1

A= g(f—fl —S+s+%) Bi= g(r—r1+2s—251+52)(2.11)
1 1

Ay = §(r+r3—1—54—s— ry) By = g(r+r3—254—|—2s—r4)(2.12)
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AGT correspondence

The Nekrasov functions
Consider N/ = 2 SYM theory with gauge group U(n) and 2n
fundamental (more precisely n fundamental plus n
anti-fundamental) hypermultiplets in Q-background. The instanton
part of the partition of this theory can be represented as

Zinst = Z Fyz"l, (31)
\4

of boxes and z is the instanton counting parameter related to the
gauge coupling in a standard manner. The coefficients Fy; are
given by

Zor(ay), @ | 3, ¥,) Zur (", Yu | &), )
F?:HH Zor (3P, Yy [ 2D v,) , (32)
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AGT correspondence

The Nekrasov functions

Zor(a, M| b,p) =[] (a= b= e1Lu(s) + e2(1 + Ax(s))) (33)
SEA

[ (2= b+ el + Li(s)) — ©Au(s))

SEN

S3

Figure: Arm and leg length with respect to a Young diagram: A(s;) = 1,
L(Sl) = 2, A(SQ) = —2, L(S2) = —3, A(S3) = —2, L(S3) = —4,
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AGT correspondence

The Nekrasov functions

Here Ax(s) and Lx(s) are correspondingly the arm-length and
leg-length of the square s towards the Young tableau ), defined as
oriented vertical and horizontal distances of the square s to outer
boundary of the Young tableau X\ (see Fig.1).

Let us clarify our conventions on gauge theory parameters 3(0’1’2),
u=1,2,...,n The parameters af,l are expectation values of the
scalar field in vector multiplet. Without loss of generality we'll
assume that the “center of mass” of these expectation values is
zero

5(1) — Z (1) _ (3.4)
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AGT correspondence

The Nekrasov functions

In fact this is not a loss of generality since a nonzero center of
mass can be absorbed by shifting hypermultiplet masses.
Furthermore af,o) (35,2)) are the masses of fundamental
(anti-fundamental) hypers. Finally the €1, € are the Q-background

parameters. Sometimes we will use the notation € = €1 + €5.
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AGT correspondence

The AGT duality

Due to AGT duality, this partition function is directly related to
specific four point conformal block in 2d A,_1 Toda field theory
[Wyllard, arXiv:0907.2189].

In what follows it would be convenient to represent the roots,
weights and Cartan elements of A,_; as n-component vectors with
the usual Kronecker scalar product, subject to the condition that
sum of components is zero. Of course this is equivalent to more
conventional representation of these quantities as diagonal
traceless n x n matrices with the pairing given by trace. In this
representation the Weyl vector is given by

-1 n-— 1-— 1
p:(n ! 3... n) or pu:n+ —u (3.5)

2 7 2 772
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AGT correspondence

The AGT duality
and the highest weight (wl)k = 61,;( — 1/!7.
In what follows a special role is played by the fields V), with the

dimensions:
A(n—1) A
hy, = — 5 <q - n> : (3.6)

A four point block:

(Va@ (00) Vyar, (D) Va@, (2) Vao (0))a = (3.7)

ha—h (1y—h ABw, A@)y
z e a“’wlfa[ NC a(1)1:|(z)7

where « specifies the W-family running in s-channel, is closely
related to the gauge partition function Zj,s see (3.13) (AGT

relation). First of all, the instanton counting parameter z gets
identified with the cross ratio of insertion points in.CFT block.
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AGT correspondence

The AGT duality

and the Toda parameter b is related to Q-background parameters

Via
€1
b=\/2. (3.8)

The map between the gauge parameters in (3.1) and conformal
block parameters in (3.7) should be established from the following
rules. To formulate them we define the rescaled gauge parameters
(0) (1) (2)
AD = 2 AN B AR (30
Jae Jae Vee
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The AGT duality

@ The differences between the “centers of mases” of the
successive rescaled gauge parameters (3.9) give the charges of
the “vertical” entries of the conformal block:

3 2
A 50 _ A;); A A0 _ A;) (3.10)

@ The rescaled gauge parameters with the subtracted centers of
masses give the momenta of the “horizontal” entries of the
conformal block:

AD — A0 = @, — oY, (3.11)
AEII) - A(l) = Qu—ay;
AR —A®) = @, — oM.
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AGT correspondence

The AGT duality

Using (3.4), (3.5) and (3.9)-(3.11) we obtain the relation between
the gauge and conformal parameters:

35,0) B —a(4)—ﬁ+ n+1_u _
\/€E1€2 a “ n 9 2 '
af,l) R n+1 g
/;6162 - u q 2 ’
() (2)
ay @ A n+1
6 oy’ + W +q ( > uj. (3.12)

With all these preparations one can write the AGT correspondence
between the Nekrasov function defined in (3.1) and the conformal
block in (3.7):
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AGT correspondence

The AGT duality

AG) (22 (3) (2)
Zinst:(l—Z) (q ,,)]__a|:)\ w1 A w1

a® a® (z). (3.13)
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AGT correspondence

Light asymptotic limit of the Nekrasov functions
Now we compute [Poghosyan, Poghossian, Sarkissian, arXiv:1602.04820] the |ight
asymptotic limit of the Nekrasov functions. For the horizontal
entries we simply put

agl) _ bnf,l); ( ) _ b77(4) ay, = bn, (3.14)

keeping all the parameters 7 finite. As for the parameters A of the
special fields V), there are two inequivalent alternatives:

(i) A= bn
(i) ng — A = bn.

Though in both cases the conformal dimension takes the same
value (see eq. (3.6))

~_n(n-1)
h= "0, (3.15)
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AGT correspondence

Light asymptotic limit of the Nekrasov functions

these fields are not identical, which can be seen e.g. from the fact
that the zero mode eigenvalues of odd W-currents for these fields
have the same absolute values but opposite signs. It is easy to
check that V(g py), is equivalent to Vi, (wn—1 is the highest
weight of the anti-fundamental representation) since the
corresponding momentum parameters Q — bnw; and

Q — (ng — bn)wp—_1 are related by a Weyl reflection.

Here we consider in detail the case when V), is a light field of
type (i) while Vi, is of type (ii). In other words we set
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AGT correspondence

Light asymptotic limit of the Nekrasov functions

For such choice we will see below, that the corresponding
instanton sum simplifies drastically and leads to a simple explicit
expression for the conformal block. Note that this choice is very
convenient since the prefactor in front of conformal block in (3.13)
now goes to 1 in the light asymptotic limit. The opposite case
when two special fields are of the same type, has been investigated
iN [ V. Fateev and S. Ribault, arXiv:1100.6764]. 1N particular case of A, Toda. In the
case considered in [V. Fateev and S. Ribault, arXiv:1100.6764]. the above mentioned
prefactor survives.

Gor Sarkissian Yerevan State University, Armenia

AGT correspondence and semiclassical limit of conformal blocks



AGT correspondence

Light asymptotic limit of the Nekrasov functions

Coming back to our case of interest using (3.16), (3.14) we can
rewrite the AGT map (3.12) as

®) n+1

320) = —61(7754)+77n>+6< 2 _u>;
1

A = —6177u+6(nJ2r —U>;

)
852) = —€a <7h(:1) T 77n> e (

In view of (3.8) the small b limit is equivalent to e; — 0. Hence
we are interested in the €; — 0 limit of (3.2).

”23 - u> . (3.17)
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AGT correspondence

Light asymptotic limit of the Nekrasov functions

We found that total degree of €1 in Fy is

N = Z Yiu. (3.18)
u=1

where Y, ; is the number of boxes in the i'th row of diagram Y,.
Each term here is non-negative and in order to get a vanishing
total degree N = 0, the array of Young diagrams should satisfy the
conditions Y11 = Y22 =--- Y, , = 0, which means that each
Young diagram Y/, consists of at most u — 1 rows.
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AGT correspondence

Light asymptotic limit of the Nekrasov functions

For F? in the light asymptotic limit we finally get

u—v+1 Yu,vfl
F? = Hu 2Hv 2 (m) (319)
2
e (T 4)+" u+v+i) (nu—nﬁl)—#“—"_")

k=1 . N
Hk u—v+1 H, uY k+1(nu_nv—1+u_v+yv—l,k+v—u_’)(7]u_77v+u—V+Yv,k+v—u—l)

where Y, ; is the number of boxes in the i'th row of diagram Y,.
As we have mentioned already, with the prescription (3.16) of the
field, in the light asymptotic limit the prefactor in (3.13) becomes
1, and hence, remembering also that the field V(nq—bn(2))w1 is

equivalent to Vbn(2)wn71' we can write
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AGT correspondence

Light asymptotic limit of the Nekrasov functions

3w )y,
tF) [ K (4)1 K (1) ' ] (2) = (3.20)
n n
) bn®w, by )w,,
limp,0F by, [ K (4)1 nbn ' ] Z Fyz!
The sum is taken over all Young diagrams Y,, u=2,...,n, with

at most u — 1 rows, i.e. over all allowed row lengths

Yu,l > Yu,2 > 2 Yu,u—l > 0.

Let us consider the particular cases when n = 2 (Liouville) and
n = 3 separately.
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AGT correspondence

Light asymptotic limit of the Nekrasov functions

When n = 2 we have a single sum

(3) 2)
: (3 p@ @t 1) (@)
LF [ 77(4) X ] (2) = X% ( )( ) !

where »Fi(a, b; c; x) is the Gauss hyper-geometric function. This
FeSU|t was fII’St Obtalned in [A. Mironov and A. Morozov, arXiv:0909.3531].
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AGT correspondence

Light asymptotic limit of the Nekrasov functions

When n = 3 we get

(3)w (2)&} 0o i—i i+j
L]-"nW3 [ 1717(4)1 7777(1)2 ] (z) = Zu,/:o(—)@ "22M7H (3.22)

3 4 3) 4 3 4
x (%—anrng )); (%—n3+77§)—1)/ <% — 113+ 1 ))j+/

(2) (2) (2)
(L_a, 7772+n§1)) (% ,,73+n51>,1) (% fn3+77§1)>
i / 41

N m—m2);(m—n3—1),(m2—n3),(m—n3—i—1) (m—m+I—i); °
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AGT correspondence

Light asymptotic limit of the Nekrasov functions

r=mn—n; s=m—n3; m+m+n=0 (3.23)

Due to (3.23) and (3.14), (3.16) for our case we have

r=m-—1m2;  S=12—13;
= 77&1) B 7751) ; 5 — ng) _ 77&1) ;
ry = 77&4) B 77§4) ; o — 77§4) _ 77§4) ;
=1?; n=0;
rs=nG); s3=0. (3.24)
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AGT correspondence

Light asymptotic limit of the Nekrasov functions

LE (r3,0) (0,52)](2): i (—1)kom—n 2k+min -

X
(raysa) n,s1) Wit kiminl(r4+s— 1),

(A1)n(A2)n(A1 +5 — 1)k(A2 + 5 — 1) (B1)k+m(B2)k+m
(M (s)k(=n+s—=1D(k—=n+3)m
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