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Introduction and Motivation

Infinite dimensional Lie algebras appear in many places in physics,
generically related with diffeomorphisms.

Diffeo’s are typically relevant to theories of gravity.

A well-known example is the Witt/Virasoro algebra related to dif f(S1).

There are Lie groups associated with these algebras.

Given a group/algebra one should ask about its representations and
its actions (adjoint or coadjoint) and modules.



e Consider diffeo’s of a d-dimensional space.
— Q: its subalgebras/groups?

— A diffeo’s on any p-dimensional (p < d) hypersurfaces in it;
diffeo’s with a prescribed properties or b'dry/falloff,e.q.
BMS3, BMS4 or Brown-Henneaux.

e Relevance to physics:
— membrane or Dy-brane dynamics

— A new statement of the Equivalence Principle if one can asso-
Ciate conserved charges to these diffeo’s.

— May be relevant to black hole physics and open up a window to
quantum gravity.



In this talk I focus on a specific subsector of diff(T%).

This algebra may be viewed as a higher dimensional extension of
the Virasoro algebra/group.

The algebra we discuss here is called NHEG algebra, as it is related
to Near Horizon limit of Extremal black hole Geometry.

The NHEG Group will be denoted by DifFE(Td), it comes with a
d-dimensional vector k and a central extension c.

—_—

In this work we classify DifFE(Td) coadjoint orbits and modules.



Outline

A quick introduction to Near Horizon Extremal Geometry, NHEG.

—_—

Introduction to NHEG algebra \7];»\0 and NHEG group DifFE(Td).

Coadjoint orbits, a review on general notion for Virasoro group.

—_—

Classification of DifFE(Td) coadjoint orbits.

\7/];\6 from U(l)d current algebra, NHEG Kac-Moody algebra.

NHEG modules.

Summary and outlook.



B The NHEG

e Near Horizon limit of Extremal black holes |leads to Near-Horizon
Extremal Geometry (NHEG).

e The NHEG form a class of solutions to Einstein GR, generically
with an SL(2,R) x U(1)™ isomtery.

e For simplicity, we focus on d dimensional Einstein vacuum solutions
with SL(2,R) x U(1)%3 isomtery, with the metric
dr2 . . . .
ds® = (0) | —r2dt® + — + d0? + v (0) (dy" + k'rdt) (dy’ + kIrdt)

where 7,9 = 1,2,--- ,d — 3.



B NHEG Killing vectors

£1 — 8157
£2 — tat — 7"87«,
1,5 nok
&3 =5+ 50 —trdy - > 0,
1=1
m; = Spi’

Their algebra

1,821 = &1, [£2,83] = &3, [£1,83] = &2,
(€., mi] =0, a€{1,2,3} and, i€ {l,...,d—3}.

e The NHEG we consider here are uniquely specified by (d—3)(d—2)/2
parameters [S. Hollands, A. Ishibashi, 2010].

e Among these parameters are d — 3 angular momenta J,.



The NHEG has a “bifurcation horizon surface’” which are codimen-
sion two constant r,t surfaces, with metric

ds? = () [d@z + %;j(e)dqsidqu] .
Constant 6 surfaces on the above is a generic T<.

T4 part of the geometry involves a constant d dimensional vector
k with components k.

Note: k does not show up in ds?;.

All interesting physical information about the NHEGs is in the k.



B Introduction to NHEG algebra \7/];\6

e NHEG algebra is a centrally extended subalgebra of smooth diffeo-
morphisms on a d dimensional torus 7T¢.

e Consdier the vector fields on T¢:
_ sin
X —_— f aqbz
fi= fi(pl, ... #%) are periodic functions on the torus:

fi(¢17"' 7¢i+2ﬁa¢d):fi(¢la“' 7¢i7"' 7¢d)7 1= 1727°" 7d

e Any vector field Xf is labelled by n functions f = (f1, -, fn).

o f(ol, -, 9% can be Fourier expanded as

. .= 7 - d .
f(fla"'7¢za"'a¢d): Z fmezm.qb, T?qu: Zmzqﬁz,mZEZ
m3i,-,Myq =1 o



e Torus is the quotient of R? by the d dimensional lattice, R%/Z4,

e 7= (n1, -+ ,nyg), n; € Z denote vectors on this d dimensional lattice.

e A vector field can hence be expanded as
X =3 Xl by = i€ 00,
™m
which form the following algebra

o >
[ b5l = Ml — Pl o

e This is the algebra of vector fields (infinitesimal diffeomorphisms)
on T% diff(T%.
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B “anisotropic torus” and generalized Witt algebra
e “Anisotropic torus” as a torus with a preferred direction k on it.

o k may then be a vector on the dual lattice of the torus or not:

— the flow (also called leaves) of k form closed curves which are
then diffeomorphic to St or,

— the leaves are diffeomorphic to R for which each leaf is dense in
a subspace of the torus.

e For the case of NHEG, the SL(2,R) isometry of the background
NHEG maps the torus to itself, therefore, we should require that k
is along the dual lattice of the torus.
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e One can then show that the ratios ’Z—‘Z should be rational numbers.

e Using the SL(d,Z) symmetry of the torus, there is a frame such
that k is along one of the axis of the dual lattice, k = (1,0,---,0).

e For the case of NHEGS,

— tori T% are coming with a metric vij Which is a function of 6
coordinate;

— kis directly related to the conserved charges associated with the
U(1)? isometries of the NHEG, J, the NHEG angular momenta.

e k'/kJ being a rational number means J'/.JJ being rational.

12



k belonging to the dual lattice of T at the level of the NHEG,
comes from a semi-classical quantization on the corresponding
U(1)4 angular momenta.

For a given vector field on the torus &, we define

§|| = > e k0= Enlyn, i =ik &L, lm =kl

This is algebra of general diffemorphisms on “anisotropic torus”
along the anisotropy direction k.

13



Generalized Witt algebra has a usual Witt algebra as a subalgebra
of generators when m = mk.

The set of generators 7 with k-m = 0 are commuting with each
other (like “supertranslations” in the BMS algebra).

In defining the above we need not introduce a metric on the T4,

However, it is useful to assume ~;; to be the metric on the tours
and use it to define dual vectors, e.q.

ni = vk, §-k=¢&n;

14



B Centrally extended generalized Witt algebra, NHEG algebra

e Generalized Witt algebra can be centrally extended to get the gen-
eralized Virasoro.

e \We call this centrally extended algebra the NHEG algebra \7/]50.

e As in the Virasoro case, the Jacobi identity, or in more technical
terms the cocycle condition, uniquely fixes the form of the central
extension (up to redefinitions of the generators):

(L, Lyl = k- (M — 1) Liym+ (@) (k-m)>8740m.0

e The central charge is in general a function of | =n — (ﬁ-l_{/kz)l_{
where k2 =k - k.

15



More on the “NHEG algebra’ \?C

e Its structure constants are given by k.
e Inthed =1 case k = 1, and the algebra is just the Virasoro algebra.

e It has infinitely many Virasoro subalgebras:

1 .
i = né, bp = — =L gk #0.
gk

c ,_ -
[lm, n] = (m — n)gm—l—n + E(e - k) m35m—|—n°

o If -k = 0, we have an infinite dimensional Abelian subalgebra.

16



e T he set of generators L, m -k = 0 also form an Abelian subalgebra
of NHEG algebra. This subalgebra may be viewed as Vec(791).

° \7/12\0 IS not semi-direct sum of this Virasoro subalgebra and subal-
gebra of commuting set of generators:

Di@(\Td) £ DIff(S1) x Vec(T9 1),

e NOTATION: Witt algebra = dif f(S1),

Virasoro algebra = dif f(S1), Virasoro group = Diff(S1)

—_—

NHEG algebra = \7/];\0 = diffE(Td), NHEG group = DifFE(Td)

17



B NHEG algebra as symplectic symmetries of NHEG

° \7/];\6 was originally obtained as the algebra of charges associated
with diffeo’s x* on the NHEG [G. Compere, K. Hajian, A. Seraj,
M.M. Sh-J, 2015]

—

— — — 1 —
xle(@)] = ek - 9y — ¢ (=0 +19), =k- Ope
r

e iS generic periodic function of all coordinates qb’i.

e Expanding in Fourier modes e = !¢

[Xﬁ7 Xm]Lie bracket = k - (ﬁ — m) Xn+m

e [ he above implies that the vectors x form the adjoint representa-
tion of the generalized Witt algebra VEC.
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e EXponentiating x one can obtain form of elements of the NHEG

—_—

group Diff(T9):

5=+ (P, F=re V@ Tzt 1Y@ _1) VY =1+4F. 5F
T

e Accordingly the metric transforms as

2 . . . .
ds®> =T (0)| — (o — dW)? + (? — dw) + d6? + v (dd" + K'o)(dd + K a)|,
where
o= (1- e—‘“)@ + e Vrdt, &= &'+ kN(F — W),
T

e [ he one-function family of metrics form a phase space and

LXQ,LLI/[F] — g,LLl/[F—I_(SXF] —guy[F], 5X[€]F — ewe, 5€\U — Gw/ —I_ 6/
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Schematic depiction of the NHEG phase space G[F].
Ji

glF]
glFF=0]=g

S[F]

Vertical axis: Different background NHEG solutions specified by
different values of J; (i.e. different k and entropy S)

Horizontal plane: The phase space constructed by the action of the
finite coordinate transformations. Each point shows a geometry in
the phase space identified by a periodic function F(g).

Moving on the horizontal plane does not change the J,.
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B The NHEG group DifFE(Td)

e Coordinate transformations vielding the NHEG algebra are

o' = ¢ +KE(), ¢~ +2m
£(¢') are smooth and periodic for all ¢.

e As discussed we can always take k= (1,0,---,0).

e NHEG group DifFE(Td) is then constructed from finite coordinate
transformations:

¢t = ¢t + F(¢"), ¢t =¢% a=2,...4d

or
(@0 = (Flo @) @),  ¢l=p,  &={¢"}

21



Here
Flo+2m:®d)=F(p,P)+2r and 0OF/0p # 0,
F(907¢27°" 7¢a+2ﬂ-7'“7¢d) :F(Spa"'aqbd)_l—Qﬂ-Naa ‘v’a=2,--- 7d7

Ng € Z may take different values for different F's.

Thus the NHEG group Diff(T%) is
Diff-(T%) = C>°(Diff(s), 797 1).
Diffa(Td) is the group of smooth maps that send a point ® on

Td_:kL to a circle diffeomorphism F(p; ®) = Fg(p). Coordinates &
are ‘spectators’ or ‘parameters’ on which F' depends.

The group operation is (f,g) — f - g with
(f- D @) = (f(9(p; @) ®), ie. (f-9o=fooge VP eT .

22



Connected components of the NHEG group.

e Fundamental group of T7d-1 is 74-1 and hence the NHEG group
DifFE(Td) has infinitely many connected components for d > 1.

e N, are the winding numbers: the vector (N»,..., N;) represents an
element of the fundamental group Z4—1.

e Any two elements of the NHEG group with different winding num-
bers belong to different connected components of the group.

e There is also orientation changing part of the Diff(S1).

23



T herefore, each connected component of the NHEG group can be
labelled by (i) the winding number of its elements, and (ii) a plus
or minus sign:

flp, %) = £ + Nag™.

Any element of the NHEG group with winding numbers N, can be
continuously connected (is homotopic) to such a simple transfor-
mation.

Our general picture is that angles ¢ play the role of parameters
on which our diffeomorphisms F' are allowed to depend.

Here we restrict ourselves to zero winding number, orientation pre-
serving sector.

24



B NHEG algebra as Virasoro bundles over 791

e If k= (1,0,---,0) the NHEG algebra generators may be rewritten
as

L7 1 27 .
L(p; ®) =3 Lye™?, Lp(®) = o doL(p; P)e ",

n

e and NHEG algebra \7~ as

S+ (D)

[Ln(P), Lin(®")] = ((“ — L~ )5

5n—|—m,0> 5d_ ! (CD_CD/)

e The cocycle condition allows for promoting ¢ to c¢(®).

e T he above makes it explicit that the NHEG algebra is a Virasoro al-
gebra where its generators (and also the central charge) are generic
smooth functions on 791,

25



—_—

B Classification of coadjoint orbits of NHEG group Diﬂ’E(Td)

e \We first review what the coadjoint orbit for Virasoro group is and
how one can classify them.

e As discussed the NHEG group is Virasoro bundles of 741 There-
fore, Virasoro coadjoint orbits will have direct relevance to our
problem too.

26



B Virasoro coadjoint orbits and their classiciation

e Orbit of each point m € M is the set of points which can be
reached by the group action L: G x M — M.:

Om ={peM\dgeqG, p=Lym}.

e Stabilizer of a point m is the set Stab,, € G whose elements act
trivially on m:

Staby, = {g € G\ m = Lym}.

e Stab,, IS a subgroup of G and Stabilizers of all points in an orbit
are isomorphic.

e The quotient GG/Stab(m) is isomorphic to the orbit O:
G /Stab(m) ~ Op,.

27



Adjoint Representation.

e Representation of a Lie group G on a vector space V is a smooth
linear action D of the group on V.

e Adjoint representation of the Lie group G is the homomorphism

Ad: G — Aut(yg), g — Adyg,

where
— d aX —1
Adg(X) = -~ (ge*¥g™1)| _,

where eX is the exponential map of X.

e Adjoint rep. of a Lie algebra is the differential of the adjoint rep.
of the group near its identity element:

d
adxY = - (AdxY)| _ =[X,Y]
t_

28



Coadjoint representation.

e Dual to the Lie algebra g, denoted by g*, is defined by the pairing
which is a bilinear form between the elements of g, g*:

(a, X) € R, acg’, Xeag.

e Coadjoint representation on the dual space g* is the homomorphism

Ad* 1 G — Aut(g"), g Ad,
where
(Ady(), X) = (a, Ad-1(X)), VX €g.

e Nondegeneracy of the pairing on g, g* ensures that the above uniquely
fixes the coadjoint action.

e Note: Aut(M) is the group of linear maps from M into itself. For
finite dimensional spaces, it is equal to GL(M).

29



e [ he above leads to a representation of the Lie algebra g on its dual
space g* through the action X — ady,:

(ady (a),Y) = —(a,adxY), Vaé€g" VY €g.

e [ his implies that the pairing is G invariant:

dy (e, X) = (adya, X) + {(a,ady X) = 0

e EXxistence of a G-invariant inner product on g induces an isomor-
phism between g and g*, and hence an isomorphism between adjoint
and coadjoint representations.

e The coadjoint orbit of a vector « € g* is defined as
Oq = {Ad;(a)\g c G}.

e This automatically classifies the dual space g* into distinct coad-
joint orbits of Q.

e T he group action on each orbit is an irrep of the group.

30



Virasoro coadjoint orbits
e Let us start with Witt group Diff(S1).

e [0 construct its coadjoint orbits consider vector fields on a circle
Vec(S1) with elements X = X (4)0,.

e T his space is an algebra given the Lie bracket between vector fields

adx(Y) = [X,Y] = (XY’ - Y X")d,.

e Expanding in Fourier modes ¢, = iem‘b, vields the Witt algebra

n, bm] = (n — M)l

31



To define dual space Vec(S1)*, we need an invariant pairing (inner
product).

A tensor density of weight 2, L = L(gb)dgbz can be paired by ele-
ments of the algebra:

(Ldg?, X0,5) = § dOL($)X (9)

Dual space of Witt algebra is hence space of tensor densities of
weight 2.

The coadjoint action of a vector Y on L, ad; (L), is then
Sy(L,X) =0 == (ad}(L),X) = —(L,ady X) = (L, [X,Y]).
yielding
ady (L) = XL+ 2L X',
as expected for a tensor density of weight 2.

32



Virasoro case, Diff(S1)

e Elements of the algebra: (X,«) € dif f(S1) and their duals (L, c) €
dif f(S1)* where «,c are real numbers.

e [ he algebra is defined as

(X, ), (Y, 8)] = ([X,Y],C(X,Y)),

e The central extension is independent of «,8 and given by the
Gelfand-Fuchs cocycle

C(X,Y) = / dp(X'Y" —Y'X,
and the pairing by
(L), (X,0)) = [ | L($)X(¢)ds + ac.

33



e Invariance of pairing under the Virasoro action, fixes the coadjoint
action of Virasoro algebra to

* _ / 1 C
a'd(X,Oz)(L’ C) — (XL —I— 2L X 247-(-X ,O)
e Finite form of the above infinitesimal transformation gives the

coadjoint action of the Virasoro group:

L
Ad?(L,C) — (ﬁ _I_ S[f7 9]7C)7

where S[f, 0] is the Schwartz derivative

mog [N 2
a3

34



Classification of Virasoro coadjoint orbits

e Stabilizer subgroups are those
* _ / 1 € m _
ad(X,a)(L, C) — (XL + 2L X 247-(-X ,O) — O,

which is a linear third order differential equation.

e T here are at most three solutions to the above equation for a given
coadjoint vector (L,c) for nonvanishing c.

e NOTE: We are only interested in periodic solutions X.

e Solutions to stabilizer equation can be constructed from solutions
to Hill's equation
d2

?&w + L(¢)y = 0.

35



e Denoting two linearly independent, real solutions by 1,15, then

W10, 3, 3,

provide the three solutions to the stabilizer equation.

e 1,1 are generically non-periodic. However, due to Flogquet theo-
rem:

w1 = " P1(6), o = e PPy (¢),

— b is the Floquet index and in general a real or pure imaginary
number and Py, P> are two periodic functions.

— Then,y1¢> is always periodic.

— Three periodic solutions happens only when b =1in/2, n € Z.

e Covariance of Hill's equation under Diff(S1) implies 1, should
transform as a density of weight +1/2.
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Monodromy matrix.

e Normalizing ¥1,v> as

Y1 — oph = —1

Most general solutions to Hill's equation are

Ty — [ P1(e) ) _ V1(¢)
"’<¢>—<w2<¢>>—A<w2<¢>>’ A € SU2,R).

e Periodicity of L(¢) then implies

v1(o+2m) \ _ [ ¥1(9)
<¢2(¢+27T) ) _M<¢2(¢) >, M € Si(2,R).

e Virasoro coadjoint orbits can be classified knowing in which Si(2,R)
conjugacy classes monodromy matrix M is.

37



Classicifcation of Virasoro coadjoint orbits

e Circular orbits

M:(—l)n<(]j§_)>, n € 7,

— 1 = 4/2/ncos(ng/2), Yy = /2/nsin(ng/2).

— L(¢) in this orbit may all be mapped to the representative value
2

L = —”T.

— The stabilizer group is PSL(”)(Q,R).

— n is the winding number and shows how many times the gener-
ators of the stabilizer group cover the St

38



e Elliptic orbits

__( _1\n [ COSTVY —sinTv
M= (-1) (simw COS TV )’ n€Zve(01)

— g1 = \J2/ncos(n+1)$/2, o= \[2/nsin(n+1)é/2

2
— L(¢) may all be mapped to the representative value L = —%.

— If v =1/K, K € Z, then stabilizer group is PSL(2,R)/Z.
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e Hyperbolic orbits

27Tb
M = (- 1)”( e_gwb>, neZbeRT,
— In this case
eb® \/E 2b ng 2 no eb? \/E no
P = —<—cos——|——sin—>, Yo = — COS —,
VEap(@Vnin2 2 n 2 S n 2

where

on Cb

n¢ 5
nb(</5) — (— COS — 5 ﬁsm ?) -+ Ccos

— L(¢) may be mapped to the representative value
> n2 —+ 4b2 3n2
Lpp="b°+ -
Fn,b(¢) 4Fn,b(¢)

— For n = O case we have a constant representative orbit with
positive definite value for L.

— Stabilizer group is U(1).
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Parabolic orbits

Mz(—l)”(l O), nEZ, q==+1.
q 1
_ : — — — 9 — 1
In this case for n =0 case ¢ = +1 and ¢ = TS Yo = TS
— The representative value is L = 0.
— For n € N case, both ¢ = £1 values are possible and,
1 2 1
Y1 = (qu sinn—¢——cosn—¢>, Yo = sinn—(b,
JHng(@) \2m 2 n 2 JHna(®)
and
5> NP n? 3n2(1 —I—%

_ 9 gp2? = -
Hngl@) =145 sin® o e = op, @)~ aH2 (9)

— Stabilizer group consists of lower-triangle matrices of the form

(-1)%(}4 2) r€R.

41






A

B Classification of coadjoint orbits of DifFE(Td)

We can classify the orbits in two different ways,
e [ hrough studying the stabilizer equation and monodromy matrix

e Making direct use of the fact that NHEG coadjoint orbits are bun-
dles of Virasoro orbits over 791 (up to the “winding numbers” Ny
discussed above).
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Calssification of orbits using monodromy map

Invariant pairing & dual elements.
e NHEG coadjoint orbits are built on the dual space to NHEG algebra.

e [0 construct this dual space, consider a vector field VE on Td,

Ve =v(¢)k - 0, é is a point on T¢.

e [ hese are are generators of finite coordinate transformations,

~ . L 7 : Y
§=o 4 @K, 0=+

. k7.
Ot
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e Next consider matrix M:
| '
M,L. — 62- - tzuj,

where u,t are arbitrary d-vectors.

e One can then easily verify that
t"uj

WM = det(M).
det(p)’ (M)u

det(M) =1+ tu;, [M '] =d}—

o If VE IS a vector field under the coordinate transformation,

i A (D) = ol iOF ()
V(R -5 =AW, B(E) = v+ 5

where we assumed k is invariant under coordinate transformations.

o) -
- )
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Next, we define invariant pairing and appropriate tensor densities:

e consider the vector [; and denote the volume element on T by Q
and consider the “d+ 1 density”

W= w($)(lidg")<2,

o (2,[; transform as

JOF ()
Q—(14+k o

such that k-I remains invariant: k', = k'l,. Then,

w(p) K

iOF($)\2

w(e) — (d) k'T; =

e [ he invariant pairing is

Wi Vo) = [, 2 v(@w(@) (-1
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Stabilizer equation.

—_—

e Stabilizer equation for Diff(79) for k = (1,0,...,0) is

" (p; @) — 4L(p; P)E (p; P) — 2L (ip; P)E(; D) = 0,

where prime denotes derivative w.r.t. o.

e Solutions to this equation describe the generators of the stabilizer
subgroup.

e NHEG Hill's equation:

V" (; @) — L(p; P)p(p; P) = 0.
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e Solutions to the Hill's equation 4,4> may be put in a doublet

ey = () e i =1

e Since L(p; ®) is periodic:

W(pl, o ¢+ 2m, 6N = AW (8), A; €SL(2,R), Vi=1,---,d.

e Since NHEG Hill's equation only involves derivative w.r.t. ¢1, the
monodromy matrices A, are in general function of ® = (¢2, .-, ¢%):

Ai — Ai(¢27 T 7¢d)
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o If T9 is a commutative torus, the monodromies associated with
shift of coordinates 2,5 by 27 should locally commute:

equivalently,

where ® is a generic point on T7d-1

e Classification of NHEG coadjoint orbits is then given through d
commuting monodromy matrices as functions on 741 each be-
longing to a conjugacy class of SL(2,R).

e Either A; belong to the same conjugacy class or they are in special
circular orbit, for which monodromy is identity matrix.

e [ hese conjugacy classes can also have different winding numbers.
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e Since we only have derivatives w.r.t ¢, requiring that ) are smooth
functions over 791 implies all the monodromies Ag, a=2,---.,d
should be trivial.

e [ herefore, the only possibility is
A = A(D), A, =1,
where A(®) is one of the standard SL(2,R) conjugacy classes.

e NHEG coadjoint orbits are exactly the same as those of Virasoro
with the new feature that the continuous label on the orbit (rel-
evant to the elliptic and hyperbolic orbits) is now a function on
741
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Backup slide: More on A, = 1:

e classification of orbits is classification of all distinct functions L(yp; ®).

e Consider “constant representative orbits” where L = L(®$). In this
case the solutions to Hill's equation are of the form

oy = XP) K@)y 1
2,/K(P) | 2y (D) /K (P)

where x(®) is an arbitrary smooth function on 791,

e K(®)e () = K2(d).

e Function x, while may lead to non-trivial Ay, has no appearance
either in L or in the solution to stabilizer equation, & = ¥1Y».

e A, monodromies resulting from x does not have any effect on the
classification of L functions and all non-equivalent orbits are only

labeled by A monomdromy.
50



NHEG group as a Virasoro bundle over 791

e Recall that the NHEG group Diﬂ’E(Td) is

Diff(T%) = COO(Difr(Sl),Td—l).

° DifFE(Td) is the group of smooth maps that send a point ® on
791 to a circle diffeomorphism F(p; ®) = Fp(p).

e T hen the NHEG coadjoint orbits should follow suit:
— At any point on T79-1 we should have a Virasoro coadjoint orbit.

— While the value of the representative L can depend on &, the
winding number cannot change as we move on Td-1
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B NHEG algebra from Abelian current algebra

e Consider a set of currents J;(¢), i € {1,--- ,d} and assume that
their Fourier modes,

Jim = j{Td e P Ti(9),
satisfy the algebra

[Ji 70 Jim] = (K - 1) vij 054,05
where «;; is the metric on the torus 7.

e For the case where k is a vector on the dual lattice of the Td, there
are two sets of generators:

— parallel modes J; 5 with 7i = nk, denoted by by J; ,
— perpendicular modes J; ; with i -k = 0, denoted by J; ; .
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e Parallel modes satisfy a usual current algebra while perpendicular
modes commute with themselves and with the parallel modes:

[Jin> Jjm] = in7ij 0pt-m.05 [Jin, s Jjml = 0.
e Perpendicular modes are central elements in the algebra of charges.

e Set of parallel and perpendicular modes overlap on J; o If we
choose the basis on T¢ where k is along the ¢ direction then,

Jin(P) = /dSOJi(%q))eiW, [Jin (D), Jjm(PD] = in7ij 6ptmo 64 H(P — ).
o J;o(®P) is the center element of the algebra for all ® ¢ Té-1
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NHEG algebra from twisted Sugawara construction

e Consider the twisted Sugawara construction

. 1 ..
L(p; ®) = B(P) k' Ji(p; @) + EWJZ'(so; ®)J;(p; P)
B(P) is an arbitrary function of ® and prime is derivative w.r.t. .
o L,(®d) satisfies the NHEG algebra with central charge

c(P)
12

= B2(P) k'yijk .
e [, J algebra

(L, Ty ) = —(k - ) J; g + 18(k - 1) %Ki 054
e J;, o form the center of the algebra:

[Ji,Ovan_i] = 0= [Ji,Ov Jj,ﬁi]a V?’?L,j

e~

e Representations of VEC can hence be labelled by eigenvalues of Ji.0-
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B Unitary irreducible representations, NHEG modules

e Currents J; z and their algebra can be used to construct a unitary
representation and the Hilbert space associated with the NHEG
algebra (and its coadjoint orbits).

e \We should first define a vacuum state and a hermitian conjugation
which may then be used to define positive norm and unitarity.

e NOTATION: we use boldface symbols for operator-valued objects
and normal ones for their eigenvalues.

e Hermitian conjugation is a Z> operation which is an inner automor-

phism of the algebra of currents:
Jig' =

1,—1)
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e The vacuum state |J?;0)

Jin(®)IJP(9);0) =0 ¥n >0, J;jo(P)JP(P);0) = JP(P)|JP($);0).
0. - : 17042
e |J7;0) are primary states of weight 5(J;°)~“.

e Descendants of these vacuum states, their modules:

|{n17n2 T }r JZO(CD)> — J—nl(qDl)J—nQ(CDQ) T |JZO(CD), O>7 vnl >0
e [ hese modules are in one-to-one correspondence with the coad-

joint orbit of the NHEG algbera labeled by L, —o(®) = 5(J2($))?:

{{n1,n2---}; JP(®)), Yy > 0} = {L_p, (P1)Lp,(P2) -+ |J7(P)), Vp, > O}.

c(®)

e The above representations are unitary if %(JiO(CID))2 > — =57
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Concluding Remarks and Outlook

NHEG algebra \7/];\,6: (L, Ll = k- (M — 7)) Lyymte(@) (k- m)>87 4170

e~

VEC has many Virasoro subalgebras, when n is restricted to a given

direction on T? |attice.
NHEG group Diff(T%) = C(Diff(st),7¢1).

We constructed coadjoint orbits of \7/];

,C

We showed NHEG coadjoint orbits are described by the same Vira-
soro coadjoint orbits bundled over Td-1,
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We introduced the one-function family of NHEG metrics which form
a phase space and VE IS its symplectic symmetry:
Schematic depiction of the NHEG phase space §[F].
Ji

. o[F]
glF =0 =3

S[F]

The NHEG phase space is then a coadjoint orbit of \7/]2\6.
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NHEG algebra can be obtained from d U(1) current algebras via
tiwsted Sugawara construction.

L= can be expressed in a Liouville-type stress-tensor:

o 1
[~ = T[W]et™? Tw:—( )2 — 292w 22“’).
n ]{Tdeﬂf [ ]6 ) [ ] e (a ) 0 + 2e

- 9 denotes the directional derivative =k -9

- eV is a primary of weight one.

Very interesting to explore this theory and its connection to d dim.
Einstein gravity.
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Relevance for extremal black hole microstates.

e We have put forward the horizon fluff proposal [arXiv:1607.00009].

e It states that black hole microstate are labeled by the soft hair
sector of the U(1) current algebra appearing the twisted Sugawara
construction.

e This proposal has been applied to 4d extremal Kerr [arXiv:1708.06378].

e The NHEG modules and unitary reps play a crucial role in carrying
out this proposal.

e [ he “Liouville-type field theory” should then arise as the long string
sector (or low energy effective theory) of the horizon fluff proposal.
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It is desirable to study the points discussed here and
complete the bottom-up black hole microstate
construction, and in particular the horizon fluff proposal,
outlined in the beginning.

Thank You For Your Attention
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Backup Slides
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B Semiclassical and Quantum Aspects of Black Holes

e \Works of last forty years, most notably by Bekenstein and Hawking,
have established black holes as

— thermodynamical systems,

— generically specified by temperature and other (chemical, rota-
tional or electrical) horizon potentials, as well as

— the Noether-Wald charges, and the entropy.

e Black holes
— Laws of Thermodynamics,

— generically shed their charges through, a blackbody radiation,
the Hawking radiation.
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Within Einstein GR + semiclassical coupling to other fields,
— black holes can form (gravitational collapse), and

— nothing prevents them from the Hawking evaporation.

Process of formation and evaporation of black holes is not unitary.

Resolution may lie in identifying an underlying stat.mech. descrip-

tion, black hole microstates.

Lore: Black hole microstates are amssed around the horizon.

64



e Extremal black holes have
— zero Hawking temperature and do not Hawking radiate;
— lowest mass for given set of charges,
— generically nonzero entropy.
— They can be a good model for some observed real black holes.

— There are unigueness theorems for extremal black hole solutions
[arXiv:0906.2367].

e Supersymmetric (BPS) black holes are necessarily extremal (the
reverse is not true).

e Microstate counting has been carried out for special class of BPS
black holes [Strominger-Vafa'95; A. Sen-since 2004].
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Microstate counting:
e [op-down approach, embedding into Quantum Gravity;

e Bottom-up approach, using semiclassical gravity picture and relying
on AdS/CFT ideas.

» Examples of top-down approach:
e Original Strominger-Vafa idea,
e D1-D5 system (and its variants),

e Quantum Entropy Function program proposed and pushed by Ashoke
Sen and collaborators have studied in last 15 years,

e and some AdSgy black holes;
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» Examples of bottom-up approach,

e Kerr/CFT [M. Guica, Monica, T. Hartman, W. Song, A. Stro-
minger], [G. Compere, arXiv:1203.3561].

e Carlip's idea [S. Carlip, PRL, 1999].

The above relies on Cardy formula to perform microstate counting and
reproduce the entropy.

»» Horizon Fluff idea M.M.Sh-J, D. Grumiller, H, Afshar, H. Yavar-
tanoo, K. Hajian, 2016-2017.

Here, I discuss the first steps of applying the horizon fluff idea for
Near Horizon Extremal Geometries.
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» De tour to Wald-Noether conserved charges

e For diffeomorphism invariant theory with a Lagrangian density L:

[[dy] = /dD:m/—detgL(Cba;x) = /L

L is a D-form.

e For any generic diffeo generated by one-form &

where E, =0 are e.o.m and © is a (D — 1)-form linear in 5.

e Recalling the identity
5£X =d&-X)+£-dX
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and that dL = 0O, then
dO —d(§ L) = —Eqd:Pq
and hence the Noether current (or Noether (D — 1)-form)
J=0O —-¢- L

iIs conserved on-shell.

e Using Poincaré Lemma, we locally have

J =dQ
where @ is the (D — 2)-form Noether charge density.



B Ambiguities in the definition of Noether charge density

Noting the above derivation, there are three kind of ambiguities appear
in the definition of Q:

Q= E"'V 60 + Wp(P)EH + Y (P, 6¢P) + dZ(P,§)
where

0L
EM aocap = (E“Vpﬁ)epﬁa?)...al), EMPB = 7

/WPB,
W(®) is a (D — 1)-form,

Y (®P,0¢®) is a (D —2) form linear in §¢®, and

dZ(d,€) is a (D — 3)-form linear in &.

W and Y come from the fact that Lagrangian £ is generically defined
up to a total derivative.
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Noether-Wald conserved charges are then defined as integrals of Q
over a codimension two surface.

This surface can be either asymptotic space or bifurcation surface
of a black hole horizon.

In our case, this codimension two surface is in fact H itself.

H is defined as constant t = ty,r = ry surfaces (for arbitrary
tg,rg) on NHEG.
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e Although H is defined at given ¢, r, its volume form, is Hodge dual
to the AdS, volume form

€9 =Y Ndng = TFdt A dt
is independent of ¢, and is SL(2, R) x U(1)¥ invariant.

e Note that

VOZNHEG — €9 N VOlg_C

e T hen a generic NHEG conserved charges is defined as

Qe = ]{H Qe = jl{}c\/—_g (xQe)"

End of De tour«
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B Proof cont'd

e Angular momentum and electric (Noether-Wald) U(1)¥ charges:

0L
=" %f}{ dZW(‘?F—Lu’ Ji=- j[}c dZN’/EMvaamiﬁ

where
0L

E,uz/ozﬁ — S Riwap

e Both of the above charges could be defined at any H defined at
any arbitrary t,r.

e In particular, one can defined q,, J,; are »r = oo.

e The J, is essentially the Komar integral.
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e The SL(2,R) charges:

2 0L
P _— < o bc ol v A"

/. is the structure constant and C5 is the second rank Casimir for
SL(2,R) (Co =2), and A" = AT(&,) is determined such that

8¢, Al = SN,

e For our case,

S S S eS eS
¢, A = 6., A° =0, 0¢ A° = ——=dr = d(—),
€1 &2 &3 Tzr (r)
and hence

eP
Qu= f AT QY =na f 4Tl =633 T,

ary — Py _
n“Q, = zp:e dp j{%dZtTL.
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B Proof of Entropy Perturbation Law

We start with Neother current associated with an arbitrary diffeo ¢
JC = @(CD, 5C¢) — CL,

Under the variation ®g — $g + 6P, imposing l.e.o.m for 6 and some
straightforward algebra we arrive at

6J¢ = w(Pg, 0P, 6,P) + d((-O(Pg, 6P)),
where
w(Pp,01P,00P) =510 (Pg, IoP) — 620 (Pp,01P)

is the symplectic current, the (D — 1)-form associated with variations
91,0, and is bilinear in its arguments [Wald, 1993].

NOTE: §® are (necessarily) not generated by diffeo’s & ( is not nec-
essarily a Killing.
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If ¢ is a Killing, 6;® = 0 (possibly up to gauge transformations),
w = 0, and therefore,

8Jc = d(¢-O(Pg,5P)) .

That is 5JC is conserved. Note that this is despite the fact that
perturbations 6 are NOT invariant under ¢, J;(6®) # O.

Using Poincaré Lemma, we can write 5JC — d5QC' where

When we have other internal gauge symmetries there are other
extra terms added to the above, but the conservation result still
remains.
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One can now compute the charge perturbations integrating over
the corresponding 5Q<’s.

Following similar steps as in the derivation of Entropy Law,
taking care of ambiguities in Noether-Wald current-density ,

taking care of technicalities associated with integrals over closed
surfaces over NHEG,

taking care of the fact that we have internal gauge symmetries,
using Cg =nHE, — k'm,;, and that ¢y vanishes on surface H de-

fined at r = rg,t = tg,
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we finally arrive at

ﬁzkiéJi+er5qr—|—n%58a,
TT
where
50
5J-z—7{5 :7{5 N 5 5—7{5 |
’ ©.@) sz H sz q’)" ©.@) <5Flu,]/>
5 _ o5 d ax. B wels 5E, = 5 ©
g—— jlg{ 1% af3 CH) a:jio(an_fa- )7

0E, is the canonical generator of the symmetry &, in the covariant
phase space [arXiv:gr-qc/9503052].
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e Consider a generic black hole with parameters (g;, m). m is assocCi-
ated with mass and ¢; to all the other charges.

e Recall the 1st law

TdS = dE — Y ;dJ;
)

(2; denote horizon angular velocities and/or electric potentials and,
J; black hole angular momenta and/or electric charges.

e All the thermodynamic quantities are functions of (g;, m).
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e Consider extremal black hole 7" = 0.

e On the extremal surface,

OF
m = m(q;) : o7,

and one can integrate the first law over the extremal surface to
obtain the BPS condition

E = E(J;)

e One may study a near extremal black hole, by moving slightly away
from a given point on the extremal surface.

79



e In general this can be

— either along the extremal surface, parameterized by 5?',

dm = 9;m(g;)d!

— or transverse to the extremal surface, parameterized by 51.

e \We then note that

T=0,T5¢,, Q=Q#+0,Q; 6,

7 11

NOTE: in’fl’f includes changes of €2, caused by moving along the
extremal surface.

NOTE: T does not have a term proportional to 5ﬁ.
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e One can show that

dE — Q% = O(e2)

7 1l

Where 5J_ Y 5|| ~ E.
» De tour to Proof:

e Consider a black hole with ¢"" = f(r), where

f — f(m,qz,r)

e For the extremal case, m = mg,

mo = mo(g;)

(%)

f=Clr—rp)2+ D0 —rp)>+ -

where C, D and rj are functions of g;.
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e Now consider the near extremal case:
m = mqg + om, r+ = rp = Ae.

while ¢g; are fixed.

e For the near extremal case

f — f(mo +5m7Qer)

=6A 4 6B(r — 1) + (C + 6C)(r — rp,)?

+(D+8D)(r —rp)3 + - -
0A,0B,6C,d0D are linear in dm.
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e Demanding f two have two roots ri, yields

SA = —CAE, §B ~ O(e?), - -

e [ he above is an outcome of regularity of metric at the horizon.

e Therefore, dm ~ 2. B

e Finally we note that dE — Y ; Q¢dJ; < dm

7 11

End of De tour «
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e Constant ¢,r surface H (for arbitrary tg,rgy) are birfucation surface
of the horizon, generated by

Cr = nYéa + k'm,;

2,.2
tr< —1
nt = — ; n2=tr, n- = —r.

2r

e (z vanishes at t =tgy, r = rg.

e All with the same surface gravity < (Unruh temperature),

1
we = —(V)* = 1.
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LLaws of NHEG Mechanics
[A. Seraj, K. Hajian, M.M. Sh-J. 2013]

B Zeroth Law of NHEG Mechanics

All codimension two surfaces H have surface gravity equal to one

B NHEG Entropy and the Entropy Law:

» NHEG has an entropy S as the conserved Noether-Wald charge
associated with CH:

-~ _ €1
7{ 5RWa5 hiar

d—2
where eqc =1 2 ,/ydOdg is the volume form of H and
ey datdr” = Cdt A dr.
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» NHEG entropy law (for the family we consider here):

S i,

27

B Entropy Perturbation Law

e Generic perturbation d® satisfying the linearized field equations,
e with charge perturbations ¢.J; and 6S and

e assuming that perturbations are invariant under &1,&> Killing vec-
tors; L515<D — L525<D = 0:

58
= = ks,

27
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Properties Fixing x

. &1, &o-invariance: (€1, x] = [€2,x] = 0.

. Volume preserving: Vux* = 0.

. Lagrangian preserving: d,L = 0, where L is the Lagrangian density
computed over the NHEG anstaz metric, a functional of I'(0), ~;,(0).

. Null direction-preserving: oyv =0, v =1+ %

. Smoothness of metric perturbations implies 6-independence of
components and y? =

. Having conserved and integrable symplectic structure.
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B Finite transformations:

' = ot = (D),

Solving the above vields:

oxH
xH[e(e)] =7 X“[e(@)].

_ 1 : . .
t:t__(ew_l)a F:rew, @Z:¢z+kzF(¢)
r

where

Notes:
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B T he symplectic structure

e Symplectic structure w is a finite, closed, nondegenerate two-form
over tangent space and a d — 1 form in space time:

W — W[(Slcb, 52¢; CD]

e O denotes exterior derivative on the phase space and d is the ex-
terior derivative over the spacetime.

e \We build w within the covariant phase space method, constructed
in [Lee-Wald '1990, Wald '1993] and refined in [Barnich-Brandt
'2002, Barnich-Comperé '2008].

e Presymplectic potential @[5®; d]: w = 080, or
W([51D, 5oP; P] = §10[55D; d] — §5,0[51D; D]
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B Construction of the symplectic structure

e The presympelctic structure 6 is a spacetime d — 1 form and a
one-form over the phase space.

e The Lee-Wald constribution to 0:

6L‘0n—8hell — dH(LW)

e Consistency of symplectic usually requires addition of boundary
terms Y:

Y is a d— 2 form on spacetime and one-form on phase space.
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Consistency of symplectic structure means its

e Conservations: W61 P, JoP; P] =~ 0 (i.e. for @ = P, ViP).

Covariance of w and that the whole phase space consists of dif-
feomorphic metric then implies

W[51¢, doP; CD] ~0 Vb, 0D

e Integrability [Lee-Wald '1991]:

ﬁ}f Xw[51¢752q)1 CD] — 07 \V/X,(SCD

e There exists Y terms which guarantee the above [arXiv:1506.nnnnn].
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B Representation of charges on the phase space

e By construction, any geometry g¢[F] in our phase space §G[F] is
uniquely specified by the set of charges /- associated with it.

e Conversely, given g[F] one can give an explicit expression of Hz in
terms of F.

e It is obtained that Hz are the Fourier modes of the tensor T'[W]:
Hp = f% ey T[W] €%,

where €4 is the volume form on H and

1
167G

O denotes the directional derivative 9 = k - 0.

(V]

((aw)2 — 20°W + 262“’).
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T[WV] resembles a Liouville theory stress tensor:

e Consider two metrics g[F] and g[F + 6.F] related by a diffeomor-
phism generated by x|e]:

Lx[e] (g,ul/[F]) — g,ul/[F + 6 F] — g,ul/[F]'

e Then we learn that 0cF = (1 + E-c‘ipF)e — Ve, or
OV = € OW + Oe.

o ¢V isa “primary field of weight one".

e T[W] then transforms as
1

0T = €T + 20€T — %836.
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