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Introduction and Motivation

• Infinite dimensional Lie algebras appear in many places in physics,

generically related with diffeomorphisms.

• Diffeo’s are typically relevant to theories of gravity.

• A well-known example is the Witt/Virasoro algebra related to diff(S1).

• There are Lie groups associated with these algebras.

• Given a group/algebra one should ask about its representations and

its actions (adjoint or coadjoint) and modules.
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• Consider diffeo’s of a d-dimensional space.

– Q: its subalgebras/groups?

– A: diffeo’s on any p-dimensional (p < d) hypersurfaces in it;

diffeo’s with a prescribed properties or b’dry/falloff,e.g.

BMS3, BMS4 or Brown-Henneaux.

• Relevance to physics:

– membrane or Dp-brane dynamics

– A new statement of the Equivalence Principle if one can asso-

ciate conserved charges to these diffeo’s.

– May be relevant to black hole physics and open up a window to

quantum gravity.
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• In this talk I focus on a specific subsector of diff(T d).

• This algebra may be viewed as a higher dimensional extension of

the Virasoro algebra/group.

• The algebra we discuss here is called NHEG algebra, as it is related

to Near Horizon limit of Extremal black hole Geometry.

• The NHEG Group will be denoted by ̂Diff~k(T
d), it comes with a

d-dimensional vector ~k and a central extension c.

• In this work we classify ̂Diff~k(T
d) coadjoint orbits and modules.
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Outline

• A quick introduction to Near Horizon Extremal Geometry, NHEG.

• Introduction to NHEG algebra V̂~k,c
and NHEG group ̂Diff~k(T

d).

• Coadjoint orbits, a review on general notion for Virasoro group.

• Classification of ̂Diff~k(T
d) coadjoint orbits.

• V̂~k,c
from U(1)d current algebra, NHEG Kac-Moody algebra.

• NHEG modules.

• Summary and outlook.
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� The NHEG

• Near Horizon limit of Extremal black holes leads to Near-Horizon

Extremal Geometry (NHEG).

• The NHEG form a class of solutions to Einstein GR, generically

with an SL(2,R)× U(1)n isomtery.

• For simplicity, we focus on d dimensional Einstein vacuum solutions

with SL(2,R)× U(1)d−3 isomtery, with the metric

ds2 = Γ(θ)

[
−r2dt2 +

dr2

r2
+ dθ2 + γij(θ)(dϕ

i+ kirdt)(dϕj + kjrdt)

]

where i, j = 1,2, · · · , d− 3.
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� NHEG Killing vectors

ξ1 = ∂t ,

ξ2 = t∂t − r∂r ,

ξ3 =
1

2
(t2 +

1

r2
)∂t − tr∂r −

n∑

i=1

ki

r
∂ϕi ,

mi = ∂ϕi ,

Their algebra

[ξ1, ξ2] = ξ1 , [ξ2, ξ3] = ξ3 , [ξ1, ξ3] = ξ2 ,

[ξa,mi] = 0 , a ∈ {1,2,3} and, i ∈ {1, . . . , d− 3} .

• The NHEG we consider here are uniquely specified by (d−3)(d−2)/2
parameters [S. Hollands, A. Ishibashi, 2010].

• Among these parameters are d− 3 angular momenta Ji.
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• The NHEG has a “bifurcation horizon surface” which are codimen-

sion two constant r, t surfaces, with metric

ds2H = Γ(θ)
[
dθ2 + γij(θ)dφ

idφj
]
.

• Constant θ surfaces on the above is a generic T d.

• T d part of the geometry involves a constant d dimensional vector
~k with components ki.

• Note: ~k does not show up in ds2H.

• All interesting physical information about the NHEGs is in the ~k.
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� Introduction to NHEG algebra V̂~k,c

• NHEG algebra is a centrally extended subalgebra of smooth diffeo-

morphisms on a d dimensional torus T d.

• Consdier the vector fields on T d:

X = f i∂φi

f i = f i(φ1, · · · , φd) are periodic functions on the torus:

f i(φ1, · · · , φi+2π, φd) = f i(φ1, · · · , φi, · · · , φd), i = 1,2, · · · , d

• Any vector field X~f
is labelled by n functions ~f = (f1, · · · , fn).

• f(φ1, · · · , φd) can be Fourier expanded as

f(f1, · · · , φi, · · · , φd) =
∑

m1,··· ,md

f~me
i~m·~φ, ~m · ~φ =

d∑

i=1

miφ
i,mi ∈ Z.
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• Torus is the quotient of Rd by the d dimensional lattice, Rd/Zd.

• ~n = (n1, · · · , nd), ni ∈ Z denote vectors on this d dimensional lattice.

• A vector field can hence be expanded as

X =
∑

~m

Xi
~mℓ
i
~m, ℓi~m = iei~m·~φ∂φi

which form the following algebra

[ℓi~m, ℓ
j
~n] = mjℓi~m+~n − niℓ

j
~m+~n.

• This is the algebra of vector fields (infinitesimal diffeomorphisms)

on T d, diff(T d).
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� “anisotropic torus” and generalized Witt algebra

• “Anisotropic torus” as a torus with a preferred direction ~k on it.

• ~k may then be a vector on the dual lattice of the torus or not:

– the flow (also called leaves) of ~k form closed curves which are

then diffeomorphic to S1 or,

– the leaves are diffeomorphic to R for which each leaf is dense in

a subspace of the torus.

• For the case of NHEG, the SL(2,R) isometry of the background

NHEG maps the torus to itself, therefore, we should require that ~k

is along the dual lattice of the torus.
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• One can then show that the ratios kj

ki
should be rational numbers.

• Using the SL(d,Z) symmetry of the torus, there is a frame such

that ~k is along one of the axis of the dual lattice, ~k = (1,0, · · · ,0).

• For the case of NHEGs,

– tori T d are coming with a metric γij which is a function of θ

coordinate;

– ~k is directly related to the conserved charges associated with the

U(1)d isometries of the NHEG, ~J, the NHEG angular momenta.

• ki/kj being a rational number means J i/Jj being rational.
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• ~k belonging to the dual lattice of T d at the level of the NHEG,

comes from a semi-classical quantization on the corresponding

U(1)d angular momenta.

• For a given vector field on the torus ξ, we define

ξ|| =
∑

~m

ξ~me
i~m·~φ~k · ~∂ =

∑

vm
ξ~mℓ~m, ξ~m = i kj ξ

j
~m, ℓ~m = ~k · ~ℓ~m.

• Lie bracket of vector fields along ~k yields generalized Witt algebra:

[ℓ~n, ℓ~m] = ~k · (~n− ~m)ℓ~n+~m.

• This is algebra of general diffemorphisms on “anisotropic torus”

along the anisotropy direction ~k.
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• Generalized Witt algebra has a usual Witt algebra as a subalgebra

of generators when ~m = m~k.

• The set of generators ℓ~m with ~k · ~m = 0 are commuting with each

other (like “supertranslations” in the BMS algebra).

• In defining the above we need not introduce a metric on the T d.

• However, it is useful to assume γij to be the metric on the tours

and use it to define dual vectors, e.g.

ηi ≡ γijk
j, ~ξ · ~k = ξiηi
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� Centrally extended generalized Witt algebra, NHEG algebra

• Generalized Witt algebra can be centrally extended to get the gen-

eralized Virasoro.

• We call this centrally extended algebra the NHEG algebra V̂~k,c
.

• As in the Virasoro case, the Jacobi identity, or in more technical

terms the cocycle condition, uniquely fixes the form of the central

extension (up to redefinitions of the generators):

[L~m, L~n] =
~k · (~m− ~n) L~n+~m+ c(~n⊥) (~k · ~m)3δ~n+~m,0

• The central charge is in general a function of ~n⊥ = ~n− (~n · ~k/k2)~k
where k2 = ~k · ~k.
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More on the “NHEG algebra” V̂~k,c

• Its structure constants are given by ~k.

• In the d = 1 case k = 1, and the algebra is just the Virasoro algebra.

• It has infinitely many Virasoro subalgebras:

~n = n~e, ℓn =
1

~e · ~k
L~n ~e · ~k 6= 0.

[ℓm, ℓn] = (m− n)ℓm+n+
c

12
(~e · ~k) m3δm+n.

• If ~e · ~k = 0, we have an infinite dimensional Abelian subalgebra.
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• The set of generators L~m, ~m ·~k = 0 also form an Abelian subalgebra

of NHEG algebra. This subalgebra may be viewed as Vec(T d−1).

• V̂~k,c
is not semi-direct sum of this Virasoro subalgebra and subal-

gebra of commuting set of generators:

̂Diff~k(T
d) 6= ̂Diff(S1) ⋉Vec(T d−1).

• NOTATION: Witt algebra = diff(S1),

Virasoro algebra = ̂diff(S1), Virasoro group = ̂Diff(S1)

NHEG algebra = V̂~k,c
= ̂diff~k(T

d), NHEG group = ̂Diff~k(T
d)
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� NHEG algebra as symplectic symmetries of NHEG

• V̂~k,c
was originally obtained as the algebra of charges associated

with diffeo’s χµ on the NHEG [G. Compere, K. Hajian, A. Seraj,

M.M. Sh-J, 2015]

χ[ǫ(~φ)] = ǫ~k · ~∂φ − ǫ′ (
1

r
∂t+ r∂r), ǫ′ ≡ ~k · ~∂φǫ

ǫ is generic periodic function of all coordinates φi.

• Expanding in Fourier modes ǫ = ei~n·~φ :

[χ~n, χ~m]Lie bracket =
~k · (~n− ~m)χ~n+~m

• The above implies that the vectors χ form the adjoint representa-

tion of the generalized Witt algebra V̂~k,c
.
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• Exponentiating χ one can obtain form of elements of the NHEG

group ̂Diff~k(T
d):

φ̄i = φi+ kiF(~φ), r̄ = re−Ψ(~φ), t̄ = t− 1

r
(eΨ(~φ) − 1), eΨ ≡ 1+ ~k · ~∂F ,

• Accordingly the metric transforms as

ds2 = Γ(θ)

[
− (σ − dΨ)2 +

(
dr

r
− dΨ

)2
+ dθ2 + γij(dφ̃

i+ kiσ)(dφ̃j + kjσ)

]
,

where

σ = (1− e−Ψ)
dr

r
+ e−Ψrdt, φ̃i = φi+ ki(F −Ψ) .

• The one-function family of metrics form a phase space and

Lχgµν[F ] = gµν[F+δχF ]−gµν[F ], δχ[ǫ]F = eΨǫ, δǫΨ = ǫΨ′ + ǫ′
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Schematic depiction of the NHEG phase space G[F ].

Ji

g[F = 0] = ḡ

g[F ]

G[F ]

Vertical axis: Different background NHEG solutions specified by

different values of Ji (i.e. different ~k and entropy S)

Horizontal plane: The phase space constructed by the action of the

finite coordinate transformations. Each point shows a geometry in

the phase space identified by a periodic function F(~ϕ).

Moving on the horizontal plane does not change the Ji.
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� The NHEG group ̂Diff~k(T
d)

• Coordinate transformations yielding the NHEG algebra are

φi → φi+ kiξ(φi), φi ∼ φi+2π,

ξ(φi) are smooth and periodic for all φi.

• As discussed we can always take ~k = (1,0, · · · ,0).

• NHEG group Diff~k(T
d) is then constructed from finite coordinate

transformations:

φ̃1 = φ1 + F(φi), φ̃a = φa, a = 2, ..., d,

or

(φ1, · · · , φd) 7→
(
F(ϕ;Φ);Φ

)
, φ1 = ϕ, Φ = {φa}
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• Here

F(ϕ+2π : Φ) = F(ϕ;Φ) + 2π and ∂F/∂ϕ 6= 0,

F(ϕ, φ2, · · · , φa+2π, ..., φd) = F(ϕ, ..., φd) + 2πNa, ∀ a = 2, · · · , d,

Na ∈ Z may take different values for different F ’s.

• Thus the NHEG group Diff~k(T
d) is

Diff~k(T
d) = C∞(Diff(S1), T d−1

)
.

• Diff~k(T
d) is the group of smooth maps that send a point Φ on

T d−1 to a circle diffeomorphism F(ϕ;Φ) ≡ FΦ(ϕ). Coordinates Φ

are ‘spectators’ or ‘parameters’ on which F depends.

• The group operation is (f, g) 7→ f · g with

(f · g)(ϕ;Φ) = (f
(
g(ϕ;Φ);Φ

)
, i.e. (f · g)Φ = fΦ ◦ gΦ ∀Φ ∈ T d−1.
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Connected components of the NHEG group.

• Fundamental group of T d−1 is Zd−1 and hence the NHEG group
̂Diff~k(T

d) has infinitely many connected components for d > 1.

• Na are the winding numbers: the vector (N2, ..., Nd) represents an

element of the fundamental group Zd−1.

• Any two elements of the NHEG group with different winding num-

bers belong to different connected components of the group.

• There is also orientation changing part of the Diff(S1).
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• Therefore, each connected component of the NHEG group can be

labelled by (i) the winding number of its elements, and (ii) a plus

or minus sign:

f(ϕ, φa) = ±ϕ+Naφ
a.

• Any element of the NHEG group with winding numbers Na can be

continuously connected (is homotopic) to such a simple transfor-

mation.

• Our general picture is that angles φa play the role of parameters

on which our diffeomorphisms F are allowed to depend.

• Here we restrict ourselves to zero winding number, orientation pre-

serving sector.
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� NHEG algebra as Virasoro bundles over T d−1

• If ~k = (1,0, · · · ,0) the NHEG algebra generators may be rewritten

as

L(ϕ;Φ) =
∑

~n

L~ne
i~n·~φ, Ln(Φ) ≡ 1

2π

∫ 2π

0
dϕL(ϕ;Φ)e−inϕ,

• and NHEG algebra V̂~k,c
as

[Ln(Φ), Lm(Φ′)] =
(
(n−m)Ln+m(

Φ+Φ′

2
)+

c(Φ)

12
δn+m,0

)
δd−1(Φ−Φ′)

• The cocycle condition allows for promoting c to c(Φ).

• The above makes it explicit that the NHEG algebra is a Virasoro al-

gebra where its generators (and also the central charge) are generic

smooth functions on T d−1.
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� Classification of coadjoint orbits of NHEG group ̂Diff~k(T
d)

• We first review what the coadjoint orbit for Virasoro group is and

how one can classify them.

• As discussed the NHEG group is Virasoro bundles of T d−1. There-

fore, Virasoro coadjoint orbits will have direct relevance to our

problem too.
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� Virasoro coadjoint orbits and their classiciation

• Orbit of each point m ∈ M is the set of points which can be

reached by the group action L : G×M → M:

Om = {p ∈ M \ ∃g ∈ G, p = Lgm}.

• Stabilizer of a point m is the set Stabm ∈ G whose elements act

trivially on m:

Stabm = {g ∈ G \m = Lgm}.

• Stabm is a subgroup of G and Stabilizers of all points in an orbit

are isomorphic.

• The quotient G/Stab(m) is isomorphic to the orbit Om:

G/Stab(m) ≃ Om.
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Adjoint Representation.

• Representation of a Lie group G on a vector space V is a smooth
linear action D of the group on V.

• Adjoint representation of the Lie group G is the homomorphism

Ad : G → Aut(g), g 7→ Adg,

where

Adg(X) =
d

dα
(geαXg−1)

∣∣∣
α=0

,

where eX is the exponential map of X.

• Adjoint rep. of a Lie algebra is the differential of the adjoint rep.

of the group near its identity element:

adXY ≡ d

dt
(AdetXY )

∣∣∣∣
t=0

= [X, Y ].
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Coadjoint representation.

• Dual to the Lie algebra g, denoted by g
∗, is defined by the pairing

which is a bilinear form between the elements of g, g∗:

〈α,X〉 ∈ R, α ∈ g
∗, X ∈ g.

• Coadjoint representation on the dual space g
∗ is the homomorphism

Ad∗ : G → Aut(g∗), g 7→ Ad∗g,

where

〈Ad∗g(α), X〉 ≡ 〈α,Adg−1(X)〉, ∀X ∈ g.

• Nondegeneracy of the pairing on g, g∗ ensures that the above uniquely

fixes the coadjoint action.

• Note: Aut(M) is the group of linear maps from M into itself. For

finite dimensional spaces, it is equal to GL(M).
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• The above leads to a representation of the Lie algebra g on its dual
space g

∗ through the action X 7→ ad∗X:

〈ad∗X(α), Y 〉 ≡ −〈α, adXY 〉, ∀α ∈ g
∗,∀Y ∈ g.

• This implies that the pairing is G invariant:

δY 〈α,X〉 = 〈ad∗Y α,X〉+ 〈α, adYX〉 = 0

• Existence of a G-invariant inner product on g induces an isomor-
phism between g and g

∗, and hence an isomorphism between adjoint
and coadjoint representations.

• The coadjoint orbit of a vector α ∈ g
∗ is defined as

Oα = {Ad∗g(α)|g ∈ G}.

• This automatically classifies the dual space g
∗ into distinct coad-

joint orbits of G.

• The group action on each orbit is an irrep of the group.
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Virasoro coadjoint orbits

• Let us start with Witt group Diff(S1).

• To construct its coadjoint orbits consider vector fields on a circle

V ec(S1) with elements X = X(φ)∂φ.

• This space is an algebra given the Lie bracket between vector fields

adX(Y ) = [X, Y ] = (XY ′ − Y X ′)∂φ.

• Expanding in Fourier modes ℓn = ieinφ, yields the Witt algebra

[ℓn, ℓm] = (n−m)ℓn+m.
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• To define dual space V ec(S1)∗, we need an invariant pairing (inner

product).

• A tensor density of weight 2, L = L(φ)dφ2 can be paired by ele-

ments of the algebra:

〈Ldφ2, X∂φ〉 =
∮
dφL(φ)X(φ)

• Dual space of Witt algebra is hence space of tensor densities of

weight 2.

• The coadjoint action of a vector Y on L, ad∗Y (L), is then

δY 〈L,X〉 = 0 =⇒ 〈ad∗Y (L), X〉 = −〈L, adYX〉 = 〈L, [X, Y ]〉.
yielding

ad∗Y (L) = XL′ +2LX ′,

as expected for a tensor density of weight 2.
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Virasoro case, ̂Diff(S1)

• Elements of the algebra: (X,α) ∈ ̂diff(S1) and their duals (L, c) ∈
̂diff(S1)∗ where α, c are real numbers.

• The algebra is defined as

[(X,α), (Y, β)] = ([X, Y ], C(X, Y )),

• The central extension is independent of α, β and given by the

Gelfand-Fuchs cocycle

C(X, Y ) =
∫
dφ(X ′Y ′′ − Y ′X ′′),

and the pairing by

〈(L, c), (X,α)〉 =
∫

S1
L(φ)X(φ)dφ+ αc.
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• Invariance of pairing under the Virasoro action, fixes the coadjoint

action of Virasoro algebra to

ad∗(X,α)(L, c) = −(XL′ +2LX ′ − c

24π
X ′′′,0).

• Finite form of the above infinitesimal transformation gives the

coadjoint action of the Virasoro group:

Ad∗f(L, c) = (
L

f ′2
+ S[f, θ], c),

where S[f, θ] is the Schwartz derivative

S[f, θ] =
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2
.
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Classification of Virasoro coadjoint orbits

• Stabilizer subgroups are those

ad∗(X,α)(L, c) = −(XL′ +2LX ′ − c

24π
X ′′′,0) = 0,

which is a linear third order differential equation.

• There are at most three solutions to the above equation for a given

coadjoint vector (L, c) for nonvanishing c.

• NOTE: We are only interested in periodic solutions X.

• Solutions to stabilizer equation can be constructed from solutions

to Hill’s equation

d2

dφ2
ψ+ L(φ)ψ = 0.
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• Denoting two linearly independent, real solutions by ψ1, ψ2, then

ψ1ψ2, ψ
2
1, ψ

2
2,

provide the three solutions to the stabilizer equation.

• ψ1, ψ2 are generically non-periodic. However, due to Floquet theo-

rem:

ψ1 = ebφP1(φ), ψ2 = e−bφP2(φ),

– b is the Floquet index and in general a real or pure imaginary

number and P1, P2 are two periodic functions.

– Then,ψ1ψ2 is always periodic.

– Three periodic solutions happens only when b = in/2, n ∈ Z.

• Covariance of Hill’s equation under Diff(S1) implies ψ1, ψ2 should

transform as a density of weight +1/2.
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Monodromy matrix.

• Normalizing ψ1, ψ2 as

ψ1ψ
′
2 − ψ2ψ

′
1 = −1

Most general solutions to Hill’s equation are

Ψ̃(φ) ≡
(
ψ̃1(φ)
ψ̃2(φ)

)
= A

(
ψ1(φ)
ψ2(φ)

)
, A ∈ Sl(2,R).

• Periodicity of L(φ) then implies
(
ψ1(φ+2π)
ψ2(φ+2π)

)
= M

(
ψ1(φ)
ψ2(φ)

)
, M ∈ Sl(2,R).

• Virasoro coadjoint orbits can be classified knowing in which Sl(2,R)
conjugacy classes monodromy matrix M is.
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Classicifcation of Virasoro coadjoint orbits

• Circular orbits

M = (−1)n
(

1 0
0 1

)
, n ∈ Z,

– ψ1 =
√
2/n cos(nφ/2), ψ2 =

√
2/n sin(nφ/2).

– L(φ) in this orbit may all be mapped to the representative value

L = −n2

4 .

– The stabilizer group is PSL(n)(2,R).

– n is the winding number and shows how many times the gener-

ators of the stabilizer group cover the S1.
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• Elliptic orbits

M = (−1)n
(

cosπν − sinπν
sinπν cosπν

)
, n ∈ Z, ν ∈ (0,1).

– ψ1 =
√
2/n cos(n+ ν)φ/2, ψ2 =

√
2/n sin(n+ ν)φ/2

– L(φ) may all be mapped to the representative value L = −(n+ν)2

4 .

– If ν = 1/K, K ∈ Z, then stabilizer group is PSL(n)(2,R)/ZK.
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• Hyperbolic orbits

M = (−1)n
(
e2πb 0

0 e−2πb

)
, n ∈ Z, b ∈ R

+.

– In this case

ψ1 =
ebφ√
Fn,b(φ)

√
2

n

(
2b

n2
cos

nφ

2
+

2

n
sin

nφ

2

)
, ψ2 =

ebφ√
Fn,b(φ)

√
2

n
cos

nφ

2
,

where

Fn,b(φ) = (
2b

n2
cos

nφ

2
+

2

n
sin

nφ

2
)2 + cos2

nφ

2
– L(φ) may be mapped to the representative value

Ln,b = b2 +
n2 +4b2

Fn,b(φ)
− 3n2

4F2
n,b(φ)

.

– For n = 0 case we have a constant representative orbit with

positive definite value for L.

– Stabilizer group is U(1).
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• Parabolic orbits

M = (−1)n
(

1 0
q 1

)
, n ∈ Z, q = ±1.

– In this case for n = 0 case q = +1 and ψ1 = φ√
2π
, ψ2 = 1√

2π
,

– The representative value is L = 0.

– For n ∈ N case, both q = ±1 values are possible and,

ψ1 =
1√

Hn,q(φ)

(
qφ

2π
sin

nφ

2
− 2

n
cos

nφ

2

)
, ψ2 =

1√
Hn,q(φ)

sin
nφ

2
,

and

Hn,q(φ) = 1+
q

2π
sin2

nφ

2
, Ln,q =

n2

2Hn,q(φ)
−

3n2(1 + q
2π)

4H2
n,q(φ)

.

– Stabilizer group consists of lower-triangle matrices of the form

(−1)n
(

1 0
r 1

)
, r ∈ R.
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� Classification of coadjoint orbits of ̂Diff~k(T
d)

We can classify the orbits in two different ways,

• Through studying the stabilizer equation and monodromy matrix

• Making direct use of the fact that NHEG coadjoint orbits are bun-

dles of Virasoro orbits over T d−1 (up to the “winding numbers” Na

discussed above).
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Calssification of orbits using monodromy map

Invariant pairing & dual elements.

• NHEG coadjoint orbits are built on the dual space to NHEG algebra.

• To construct this dual space, consider a vector field V~k on T d,

V~k = v(~φ)~k · ∂, ~φ is a point on T d.

• These are are generators of finite coordinate transformations,

φ̃i = φi+ F(~φ)ki,
∂φ̃j

∂φi
= δ

j
i +

∂F(~φ)

∂φi
kj.
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• Next consider matrix M :

M
j
i = δ

j
i + tiuj,

where u,t are arbitrary d-vectors.

• One can then easily verify that

det(M) = 1+ tiui, [M−1]ij = δij −
tiuj

det(M)
, uiM

j
i = det(M)uj.

• If V~k is a vector field under the coordinate transformation,

v(~φ)ki · ∂φ̃
j

∂φi
= ṽ(~̃φ)kj, ṽ(~̃φ) = v(~φ)(1 + ki

∂F(~φ)

∂φi
),

where we assumed ~k is invariant under coordinate transformations.
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Next, we define invariant pairing and appropriate tensor densities:

• consider the vector li and denote the volume element on T d by Ω

and consider the “d+1 density”

W~l
= w(~φ)(lidφ

i)Ω,

• Ω, li transform as

Ω → (1 + ki
∂F(~φ)

∂φi
)Ω, li → l̃i

such that k · l remains invariant: kili = kil̃i. Then,

w(φ) → w̃(~̃φ) kil̃i =
w(~φ) kili

(1 + ki∂F (~φ)
∂φi

)2
,

• The invariant pairing is

〈W~l
, V~k〉 =

∫

Td
Ω v(~ϕ)w(~φ)(~k ·~l)
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Stabilizer equation.

• Stabilizer equation for ̂Diff~k(T
d) for ~k = (1,0, ...,0) is

ξ′′′(ϕ;Φ)− 4L(ϕ;Φ)ξ′(ϕ;Φ)− 2L′(ϕ;Φ)ξ(ϕ;Φ) = 0,

where prime denotes derivative w.r.t. ϕ.

• Solutions to this equation describe the generators of the stabilizer

subgroup.

• NHEG Hill’s equation:

ψ′′(ϕ;Φ)− L(ϕ;Φ)ψ(ϕ;Φ) = 0.
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• Solutions to the Hill’s equation ψ1, ψ2 may be put in a doublet

Ψ(ϕ;Φ) ≡
(
ψ1(ϕ;Φ)
ψ2(ϕ;Φ)

)
, ψ′

1ψ2 − ψ′
2ψ1 = −1

• Since L(ϕ;Φ) is periodic:

Ψ(φ1, · · · , φi+2π, · · · , φd) = AiΨ(~φ), Ai ∈ SL(2,R), ∀i = 1, · · · , d.

• Since NHEG Hill’s equation only involves derivative w.r.t. φ1, the

monodromy matrices Ai are in general function of Φ = (φ2, · · · , φd):

Ai = Ai(φ
2, · · · , φd)
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• If Td is a commutative torus, the monodromies associated with

shift of coordinates i, j by 2π should locally commute:

Ψ(φ1, · · · , φi+2π, · · · , φj +2π, · · · ) = AiAjΨ(~φ) = AjAiΨ(~φ)

equivalently,

[Ai(Φ),Aj(Φ)] = 0, ∀i, j = 1, · · · , d,
where Φ is a generic point on T d−1.

• Classification of NHEG coadjoint orbits is then given through d

commuting monodromy matrices as functions on T d−1 each be-

longing to a conjugacy class of SL(2,R).

• Either Ai belong to the same conjugacy class or they are in special

circular orbit, for which monodromy is identity matrix.

• These conjugacy classes can also have different winding numbers.
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• Since we only have derivatives w.r.t ϕ, requiring that ψ are smooth

functions over T d−1 implies all the monodromies Aa, a = 2, · · · , d
should be trivial.

• Therefore, the only possibility is

A1 = A(Φ), Aa = 1,

where A(Φ) is one of the standard SL(2,R) conjugacy classes.

• NHEG coadjoint orbits are exactly the same as those of Virasoro

with the new feature that the continuous label on the orbit (rel-

evant to the elliptic and hyperbolic orbits) is now a function on

T d−1.
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Backup slide: More on Aa = 1:

• classification of orbits is classification of all distinct functions L(ϕ;Φ).

• Consider “constant representative orbits” where L = L(Φ). In this

case the solutions to Hill’s equation are of the form

ψ1 =
χ(Φ)

2
√
K(Φ)

eK(Φ)ϕ, ψ2 =
1

2χ(Φ)
√
K(Φ)

e−K(Φ)ϕ, L(Φ) = K2(Φ).

where χ(Φ) is an arbitrary smooth function on T d−1.

• Function χ, while may lead to non-trivial Aa, has no appearance

either in L or in the solution to stabilizer equation, ξ = ψ1ψ2.

• Aa monodromies resulting from χ does not have any effect on the

classification of L functions and all non-equivalent orbits are only

labeled by A monomdromy.
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NHEG group as a Virasoro bundle over T d−1

• Recall that the NHEG group Diff~k(T
d) is

Diff~k(T
d) = C∞(Diff(S1), T d−1

)
.

• Diff~k(T
d) is the group of smooth maps that send a point Φ on

T d−1 to a circle diffeomorphism F(ϕ;Φ) ≡ FΦ(ϕ).

• Then the NHEG coadjoint orbits should follow suit:

– At any point on T d−1 we should have a Virasoro coadjoint orbit.

– While the value of the representative L can depend on Φ, the

winding number cannot change as we move on T d−1.
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� NHEG algebra from Abelian current algebra

• Consider a set of currents Ji(~φ), i ∈ {1, · · · , d} and assume that

their Fourier modes,

Ji,~n =
∮

T d
e−i~n·

~φJi(~φ),

satisfy the algebra

[Ji,~n, Jj,~m] = i(~k · ~n) γij δ~n+~m,0,

where γij is the metric on the torus T d.

• For the case where ~k is a vector on the dual lattice of the T d, there

are two sets of generators:

– parallel modes Ji,~n with ~n = n~k, denoted by by Ji,n

– perpendicular modes Ji,~n with ~n · ~k = 0, denoted by Ji,~n⊥.
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• Parallel modes satisfy a usual current algebra while perpendicular

modes commute with themselves and with the parallel modes:

[Ji,n, Jj,m] = in γij δn+m,0, [Ji,n⊥, Jj,~m] = 0.

• Perpendicular modes are central elements in the algebra of charges.

• Set of parallel and perpendicular modes overlap on Ji,0: If we

choose the basis on T d where ~k is along the ϕ direction then,

Ji,n(Φ) =

∫
dϕJi(ϕ,Φ)einϕ, [Ji,n(Φ), Jj,m(Φ′)] = in γij δn+m,0 δ

d−1(Φ−Φ′).

• Ji,0(Φ) is the center element of the algebra for all Φ ∈ T d−1.
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NHEG algebra from twisted Sugawara construction

• Consider the twisted Sugawara construction

L(ϕ;Φ) ≡ β(Φ) kiJ ′i(ϕ;Φ) +
1

2
γijJi(ϕ;Φ)Jj(ϕ;Φ)

β(Φ) is an arbitrary function of Φ and prime is derivative w.r.t. ϕ.

• Ln(Φ) satisfies the NHEG algebra with central charge

c(Φ)

12
= β2(Φ) kiγijk

j.

• L, J algebra

[L~n, Ji, ~m] = −(~k · ~m)Ji,~n+~m+ iβ(~k · ~m)2ki δ~n+~m

• Ji,0 form the center of the algebra:

[Ji,0, L~m] = 0 = [Ji,0, Jj,~m], ∀~m, j.

• Representations of V̂~k,c can hence be labelled by eigenvalues of Ji,0.
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� Unitary irreducible representations, NHEG modules

• Currents Ji,~n and their algebra can be used to construct a unitary

representation and the Hilbert space associated with the NHEG

algebra (and its coadjoint orbits).

• We should first define a vacuum state and a hermitian conjugation

which may then be used to define positive norm and unitarity.

• NOTATION: we use boldface symbols for operator-valued objects

and normal ones for their eigenvalues.

• Hermitian conjugation is a Z2 operation which is an inner automor-

phism of the algebra of currents:

J i,~n
† = J i,−~n,
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• The vacuum state |J0i ; 0〉

J i,n(Φ)|J0i (Φ); 0〉 = 0 ∀n > 0, J i,0(Φ)|J0i (Φ); 0〉 = J0i (Φ)|J0i (Φ); 0〉.

• |J0i ; 0〉 are primary states of weight 1
2(J

0
i )

2.

• Descendants of these vacuum states, their modules:

|{n1, n2 · · · };J0i (Φ)〉 = J−n1(Φ1)J−n2(Φ2) · · · |J0i (Φ); 0〉, ∀nl > 0

• These modules are in one-to-one correspondence with the coad-

joint orbit of the NHEG algbera labeled by Ln=0(Φ) = 1
2(J

0
i (Φ))2:

{|{n1, n2 · · · }; J0i (Φ)〉, ∀nl > 0} = {L−p1(Φ1)L−p2(Φ2) · · · |J0i (Φ)〉, ∀pl > 0}.

• The above representations are unitary if 1
2(J

0
i (Φ))2 > −c(Φ)

24 .
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Concluding Remarks and Outlook
——————————–

⊛ NHEG algebra V̂~k,c
: [L~m, L~n] =

~k · (~m− ~n) L~n+~m+c(~n⊥) (~k · ~m)3δ~n+~m,0

⊛ V̂~k,c
has many Virasoro subalgebras, when ~n is restricted to a given

direction on T d lattice.

⊛ NHEG group Diff~k(T
d) = C∞

(
Diff(S1), T d−1

)
.

⊛ We constructed coadjoint orbits of V̂~k,c
.

⊛ We showed NHEG coadjoint orbits are described by the same Vira-

soro coadjoint orbits bundled over T d−1.
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⊛ We introduced the one-function family of NHEG metrics which form

a phase space and V̂~k,c
is its symplectic symmetry:

Schematic depiction of the NHEG phase space G[F ].

Ji

g[F = 0] = ḡ

g[F ]

G[F ]

The NHEG phase space is then a coadjoint orbit of V̂~k,c
.
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⊛ NHEG algebra can be obtained from d U(1) current algebras via

tiwsted Sugawara construction.

⊛ L~n can be expressed in a Liouville-type stress-tensor:

L~n =

∮

T d
ǫH T [Ψ]ei~n·~ϕ, T [Ψ] =

1

16πG

(
(∂Ψ)2 − 2∂2Ψ+2e2Ψ

)
.

- ∂ denotes the directional derivative ∂ ≡ ~k · ~∂

- eΨ is a primary of weight one.

Very interesting to explore this theory and its connection to d dim.

Einstein gravity.
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⊛Relevance for extremal black hole microstates.

• We have put forward the horizon fluff proposal [arXiv:1607.00009].

• It states that black hole microstate are labeled by the soft hair

sector of the U(1) current algebra appearing the twisted Sugawara

construction.

• This proposal has been applied to 4d extremal Kerr [arXiv:1708.06378].

• The NHEG modules and unitary reps play a crucial role in carrying

out this proposal.

• The “Liouville-type field theory” should then arise as the long string

sector (or low energy effective theory) of the horizon fluff proposal.
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It is desirable to study the points discussed here and
complete the bottom-up black hole microstate

construction, and in particular the horizon fluff proposal,
outlined in the beginning.

Thank You For Your Attention
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Backup Slides
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� Semiclassical and Quantum Aspects of Black Holes

• Works of last forty years, most notably by Bekenstein and Hawking,

have established black holes as

– thermodynamical systems,

– generically specified by temperature and other (chemical, rota-

tional or electrical) horizon potentials, as well as

– the Noether-Wald charges, and the entropy.

• Black holes

– Laws of Thermodynamics,

– generically shed their charges through, a blackbody radiation,

the Hawking radiation.
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• Within Einstein GR + semiclassical coupling to other fields,

– black holes can form (gravitational collapse), and

– nothing prevents them from the Hawking evaporation.

• Process of formation and evaporation of black holes is not unitary.

• Resolution may lie in identifying an underlying stat.mech. descrip-

tion, black hole microstates.

• Lore: Black hole microstates are amssed around the horizon.
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• Extremal black holes have

– zero Hawking temperature and do not Hawking radiate;

– lowest mass for given set of charges,

– generically nonzero entropy.

– They can be a good model for some observed real black holes.

– There are uniqueness theorems for extremal black hole solutions

[arXiv:0906.2367].

• Supersymmetric (BPS) black holes are necessarily extremal (the

reverse is not true).

• Microstate counting has been carried out for special class of BPS

black holes [Strominger-Vafa’95; A. Sen-since 2004].
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Microstate counting:

• Top-down approach, embedding into Quantum Gravity;

• Bottom-up approach, using semiclassical gravity picture and relying
on AdS/CFT ideas.

◮ Examples of top-down approach:

• Original Strominger-Vafa idea,

• D1-D5 system (and its variants),

• Quantum Entropy Function program proposed and pushed by Ashoke
Sen and collaborators have studied in last 15 years,

• and some AdS5 black holes;
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◮ Examples of bottom-up approach,

• Kerr/CFT [M. Guica, Monica, T. Hartman, W. Song, A. Stro-

minger], [G. Compere, arXiv:1203.3561].

• Carlip’s idea [S. Carlip, PRL, 1999].

The above relies on Cardy formula to perform microstate counting and

reproduce the entropy.

◮◮ Horizon Fluff idea M.M.Sh-J, D. Grumiller, H, Afshar, H. Yavar-

tanoo, K. Hajian, 2016-2017.

Here, I discuss the first steps of applying the horizon fluff idea for

Near Horizon Extremal Geometries.
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◮ De tour to Wald-Noether conserved charges

• For diffeomorphism invariant theory with a Lagrangian density L:

I[Φα] =

∫
dDx

√
−det gL(Φα;x) ≡

∫
L

L is a D-form.

• For any generic diffeo generated by one-form ξ

δξL = EαδξΦα+ dΘ(Φ, δξΦ)

where Eα = 0 are e.o.m and Θ is a (D − 1)-form linear in δξΦ.

• Recalling the identity

δξX = d(ξ ·X) + ξ · dX

68



and that dL = 0, then

dΘ− d(ξ · L) = −EαδξΦα

and hence the Noether current (or Noether (D − 1)-form)

J ≡ Θ− ξ · L

is conserved on-shell.

• Using Poincaré Lemma, we locally have

J = dQ

where Q is the (D − 2)-form Noether charge density.



� Ambiguities in the definition of Noether charge density Q

Noting the above derivation, there are three kind of ambiguities appear

in the definition of Q:

Q = Eµν∇µξν +Wµ(Φ)ξµ+Y(Φ, δξΦ)+ dZ(Φ, ξ)

where

Eµν
α3···αD = (Eµνρβ)ǫρβα3···αD , Eµνρβ ≡ δL

δRµνρβ
,

W(Φ) is a (D − 1)-form,

Y(Φ, δξΦ) is a (D − 2) form linear in δξΦ, and

dZ(Φ, ξ) is a (D − 3)-form linear in ξ.

W and Y come from the fact that Lagrangian L is generically defined

up to a total derivative.
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• Noether-Wald conserved charges are then defined as integrals of Q

over a codimension two surface.

• This surface can be either asymptotic space or bifurcation surface

of a black hole horizon.

• In our case, this codimension two surface is in fact H itself.

• H is defined as constant t = tH , r = rH surfaces (for arbitrary

tH , rH) on NHEG.
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• Although H is defined at given t, r, its volume form, is Hodge dual

to the AdS2 volume form

ǫ2 ≡ ξa ∧ dna = Γdt ∧ dt

is independent of t, r and is SL(2, R)× U(1)N invariant.

• Note that

V olNHEG = ǫ2 ∧ V olH

• Then a generic NHEG conserved charges is defined as

Qξ =
∮

H
Qξ =

∮

H

√
−g (∗Qξ)

tr

End of De tour◭
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� Proof cont’d

• Angular momentum and electric (Noether-Wald) U(1)N charges:

qr = −
∮

H
dΣµν

∂L

∂F
r
µν
, J i = −

∮

H
dΣµνEµναβ∇αm

β
i

where

Eµναβ =
δL

δRµναβ

• Both of the above charges could be defined at any H defined at

any arbitrary t, r.

• In particular, one can defined qr, J i are r = ∞.

• The J i is essentially the Komar integral.
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• The SL(2, R) charges:

Q
µν
ξa

=
2

C2
L f bca ξ

µ
b ξ
ν
c +

∑

r
Λr

∂L

∂F rµν
,

fabc is the structure constant and C2 is the second rank Casimir for

SL(2, R) (C2 = 2), and Λr = Λr(ξa) is determined such that

δξaA
r
µ = ∂µΛ

r.

• For our case,

δξ1A
s = δξ2A

s = 0 , δξ3A
s = −e

s

r2
dr = d(

es

r
) ,

and hence

Qa ≡
∮

H
dΣµνQ

µν
a = na

∮

H
dΣtrL− δa3

∑

p

ep

r
qp

naQa =
∑

p
epqp −

∮

H
dΣtrL .
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� Proof of Entropy Perturbation Law

We start with Neother current associated with an arbitrary diffeo ζ

Jζ ≡ Θ(Φ, δζΦ)− ζ ·L ,

Under the variation Φ0 → Φ0 + δΦ, imposing l.e.o.m for δΦ and some

straightforward algebra we arrive at

δJζ = ω(Φ0, δΦ, δζΦ)+ d(ζ ·Θ(Φ0, δΦ)) ,

where

ω(Φ0, δ1Φ, δ2Φ) ≡ δ1Θ(Φ0, δ2Φ)− δ2Θ(Φ0, δ1Φ)

is the symplectic current, the (D − 1)-form associated with variations

δ1, δ2, and is bilinear in its arguments [Wald, 1993].

NOTE: δΦ are (necessarily) not generated by diffeo’s & ζ is not nec-

essarily a Killing.
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• If ζ is a Killing, δζΦ = 0 (possibly up to gauge transformations),

ω = 0, and therefore,

δJζ = d(ζ ·Θ(Φ0, δΦ)) .

• That is δJζ is conserved. Note that this is despite the fact that

perturbations δΦ are NOT invariant under ζ, δζ(δΦ) 6= 0.

• Using Poincaré Lemma, we can write δJζ = dδQζ, where

δQζ = ζ ·Θ(Φ0, δΦ) .

• When we have other internal gauge symmetries there are other

extra terms added to the above, but the conservation result still

remains.
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• One can now compute the charge perturbations integrating over

the corresponding δQζ’s.

• Following similar steps as in the derivation of Entropy Law,

• taking care of ambiguities in Noether-Wald current-density ,

• taking care of technicalities associated with integrals over closed

surfaces over NHEG,

• taking care of the fact that we have internal gauge symmetries,

• using ζH = naHξa − kimi, and that ζH vanishes on surface H de-

fined at r = rH , t = tH,

76



we finally arrive at

δS

2π
= kiδJ i+ erδqr + naHδEa ,

where

δJ i ≡ −
∮

∞
δQmi =

∮

H
δQmi , δqr ≡ −

∮

∞
δ

(
δL

δFµν

)
,

δS

2π
= −2δ

∮

H
dΣµνE

µν
αβ∇

αζ
β
H , δEa ≡

∮

∞
(δQξa − ξa.Θ) ,

δEa is the canonical generator of the symmetry ξa in the covariant

phase space [arXiv:gr-qc/9503052].
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• Consider a generic black hole with parameters (qi,m). m is associ-

ated with mass and qi to all the other charges.

• Recall the 1st law

TdS = dE −
∑

i

ΩidJi

Ωi denote horizon angular velocities and/or electric potentials and,

Ji black hole angular momenta and/or electric charges.

• All the thermodynamic quantities are functions of (qi,m).
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• Consider extremal black hole T = 0.

• On the extremal surface,

m = m(qi), Ωext
i =

∂E

∂Ji

and one can integrate the first law over the extremal surface to

obtain the BPS condition

E = E(Ji)

• One may study a near extremal black hole, by moving slightly away

from a given point on the extremal surface.
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• In general this can be

– either along the extremal surface, parameterized by δiq,

dm = ∂im(qi)δ
i
q

– or transverse to the extremal surface, parameterized by δi⊥.

• We then note that

T = ∂⊥T δ⊥, Ωi = Ωext
i q + ∂⊥Ωi δ⊥

NOTE: Ωext
i q

includes changes of Ωi caused by moving along the

extremal surface.

NOTE: T does not have a term proportional to δiq.
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• One can show that

dE −Ωext
i q dJi = O(ǫ2) (>)

where δ⊥ ∼ δq ∼ ǫ.

◮ De tour to Proof:

• Consider a black hole with grr = f(r), where

f = f(m, qi; r)

• For the extremal case, m = m0,

m0 = m0(qi)

f = C(r − rh)
2 +D(r − rh)

3 + · · ·
where C,D and rh are functions of qi.
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• Now consider the near extremal case:

m = m0 + δm, r± = rh ±∆ǫ.

while qi are fixed.

• For the near extremal case

f = f(m0 + δm, qi; r)

= δA+ δB(r − rh) + (C + δC)(r − rh)
2

+(D+ δD)(r − rh)
3 + · · ·

δA, δB, δC, δD are linear in δm.

82



• Demanding f two have two roots r±, yields

δA = −C∆ǫ2, δB ∼ O(ǫ2), · · ·

• The above is an outcome of regularity of metric at the horizon.

• Therefore, δm ∼ ǫ2. �

• Finally we note that dE −∑
iΩ

ext
i q
dJi ∝ δm

End of De tour ◭
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• Constant t, r surface H (for arbitrary tH , rH) are birfucation surface

of the horizon, generated by

ζH = naHξa+ kimi

n1 = −t
2r2 − 1

2r
, n2 = t r , n3 = −r.

• ζH vanishes at t = tH , r = rH.

• All with the same surface gravity κ (Unruh temperature),

κ2 = −1

2
(∇ζH)2 = 1.
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Laws of NHEG Mechanics
[A. Seraj, K. Hajian, M.M. Sh-J. 2013]

� Zeroth Law of NHEG Mechanics

All codimension two surfaces H have surface gravity equal to one

� NHEG Entropy and the Entropy Law:

◮ NHEG has an entropy S as the conserved Noether-Wald charge

associated with ζH:

S

2π
= −

∮

H
ǫH

δL

δRµναβ
ǫ⊥µνǫ

⊥
αβ

where ǫH = Γ
d−2
2
√
γ dθ d~ϕ is the volume form of H and

ǫ⊥µνdxµdxν = Γdt ∧ dr.
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◮ NHEG entropy law (for the family we consider here):

S

2π
= kiJ i

� Entropy Perturbation Law

• Generic perturbation δΦ satisfying the linearized field equations,

• with charge perturbations δJi and δS and

• assuming that perturbations are invariant under ξ1, ξ2 Killing vec-

tors; Lξ1δΦ = Lξ2δΦ = 0:

δS

2π
= kiδJi
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◮ Properties Fixing χ

1. ξ1, ξ2-invariance: [ξ1, χ] = [ξ2, χ] = 0.

2. Volume preserving: ∇µχµ = 0.

3. Lagrangian preserving: δχL = 0, where L is the Lagrangian density

computed over the NHEG anstaz metric, a functional of Γ(θ), γij(θ).

4. Null direction-preserving: δχv = 0, v = t+ 1
r .

5. Smoothness of metric perturbations implies θ-independence of χ

components and χθ = 0.

6. Having conserved and integrable symplectic structure.
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� Finite transformations:

x̄µ → xµ = xµ(x̄), χµ[ǫ(ϕ)] =
∂xµ

∂x̄α
χ̄α[ǭ(ϕ̄)].

Solving the above yields:

t̄ = t− 1

r
(eΨ − 1), r̄ = reΨ, ϕ̄i = ϕi+ kiF(~ϕ)

where

eΨ = 1+ ~k · ~∂F = 1+ ∂F

Notes:

t̄+
1

r̄
= t+

1

r
, ǭ(ϕ̄) = e−Ψ ǫ(ϕ)
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� The symplectic structure

• Symplectic structure ω is a finite, closed, nondegenerate two-form

over tangent space and a d− 1 form in space time:

ω = ω[δ1Φ, δ2Φ;Φ]

• δ denotes exterior derivative on the phase space and d is the ex-

terior derivative over the spacetime.

• We build ω within the covariant phase space method, constructed

in [Lee-Wald ’1990, Wald ’1993] and refined in [Barnich-Brandt

’2002, Barnich-Comperé ’2008].

• Presymplectic potential θ[δΦ;Φ]: ω = δθ, or

ω[δ1Φ, δ2Φ;Φ] = δ1θ[δ2Φ;Φ]− δ2θ[δ1Φ;Φ]
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� Construction of the symplectic structure

• The presympelctic structure θ is a spacetime d − 1 form and a

one-form over the phase space.

• The Lee-Wald constribution to θ:

δL|on−shell = dθ(LW).

• Consistency of symplectic usually requires addition of boundary

terms Y:

θ = θ(LW ) + dY.

Y is a d− 2 form on spacetime and one-form on phase space.
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Consistency of symplectic structure means its

• Conservations: ω[δ1Φ, δ2Φ;Φ] ≈ 0 (i.e. for Φ = Φ̄, ∀δΦ).

Covariance of ω and that the whole phase space consists of dif-

feomorphic metric then implies

ω[δ1Φ, δ2Φ;Φ] ≈ 0 ∀Φ, δΦ

• Integrability [Lee-Wald ’1991]:

∮
H χ·ω[δ1Φ, δ2Φ;Φ] = 0, ∀χ, δΦ

• There exists Y terms which guarantee the above [arXiv:1506.nnnnn].
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� Representation of charges on the phase space

• By construction, any geometry g[F ] in our phase space G[F ] is

uniquely specified by the set of charges H~n associated with it.

• Conversely, given g[F ] one can give an explicit expression of H~n in

terms of F .

• It is obtained that H~n are the Fourier modes of the tensor T [Ψ]:

H~n =

∮

H
ǫH T [Ψ] ei~n·~ϕ,

where ǫH is the volume form on H and

T [Ψ] =
1

16πG

(
(∂Ψ)2 − 2∂2Ψ+2e2Ψ

)
.

∂ denotes the directional derivative ∂ ≡ ~k · ~∂.
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T [Ψ] resembles a Liouville theory stress tensor:

• Consider two metrics g[F ] and g[F + δǫF ] related by a diffeomor-

phism generated by χ[ǫ]:

Lχ[ǫ](gµν[F ]) = gµν[F + δǫF ]− gµν[F ].

• Then we learn that δǫF = (1+ ~k · ~∂ϕF)ǫ = eΨǫ, or

δǫΨ = ǫ ∂Ψ+ ∂ǫ.

• eΨ is a “primary field of weight one”.

• T [Ψ] then transforms as

δǫT = ǫ∂T +2∂ǫT − 1

8πG
∂3ǫ.
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