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Introduction
The concept of triviality in QFT originates from papers by Landau
and collaborators studying the asymptotic behavior of the photon
propagator in QED

L. D. Landau, A. A. Abrikosov and J. M. Khalatnikov, Dokl. Akad.
Nauk SSSR 95(1954) 773; 95(1954)1177; 96 (1954) 261.
L. D. Landau, in: Niels Bohr and the Development of Physics, ed. W.
Pauli (Pergamon, London, 1955); and works cited in there.

Resumming the leading logarithms they found that the photon
propagator has a pole at large momentum transfer. If this pole
persists in non-perturbative calculations then to avoid the apparent
inconsistency QED has to be a non-interacting, i.e. trivial, theory.

In calculations applying a finite cutoff this problem manifests itself as
a singularity in the bare coupling for a finite value of the cutoff. It is
therefore impossible to remove the cutoff unless the renormalized
coupling vanishes. For a review see e.g.

D. J. E. Callaway, Phys. Rept. 167, 241 (1988).



Triviality of QED has been investigated on the lattice in

M. Gockeler, R. Horsley, V. Linke, P. E. L. Rakow, G. Schierholz and
H. Stuben, Phys. Rev. Lett. 80, 4119 (1998).

It was found that while the Landau pole lies beyond the accessible
region of the parameter space due to spontaneous chiral symmetry
breaking, spinor QED (with four flavors) does not exist as an
interacting theory.



The standard model, in a modern point of view, is a LO
approximation to an EFT

S. Weinberg, “The Quantum Theory Of Fields. Vol. 1,2.Cambridge,
UK: Univ. Pr. (1995).

While the effective Lagrangian contains an infinite number of local
interactions, at low energies the contributions in physical quantities
of the non-renormalizable interactions (in the traditional sense) are
suppressed by powers of the energy divided by a large scale.

In EFT the solution of the LO Wilson renormalization group
equations might be obstructed at very large cutoffs, however, this
should not be a severe problem because of irrelevant interactions or
omitted fields being important at short distances. Therefore
inconsistencies in the renormalization group analysis of
renormalizable quantum field theories, like QED or φ4 theory of
self-interacting scalars, might be absent in the corresponding EFT.



We address the consequences of treating QED as a leading order
approximation of an EFT for the problem of triviality.

To that end we analyze the contributions of the next-to-leading order
interaction, i.e. dimension five operator, the well-known Pauli term.



A simple demonstration of the problem
Consider the LS equation for the S-wave scattering amplitude

T
(
p,p′,q

)
= V

(
p,p′

)
+ m

∫ ∞
0

dk k2

(2π)3
V (p, k) T (k ,p′,q)

q2 − k2 + i 0+

with the potential

VNLO = c + c2

(
p2 + p′2

)
.

The corresponding on-shell amplitude reads:

TNLO(q) =
c2
[
c2
(
I3q2 − I5

)
− 2q2]− c

I
(
q2
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c2
(
c2
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)
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]
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where using the cutoff regularization loop integrals are given by

In = −m
∫

d3~k
(2π)3 kn−3 θ(Λ− k) = − m Λn

2 n π2 ,

I(p2) =

∫
d3~k

(2π)3
mθ(Λ− k)

p2 − k2 + i 0+
= − i p m

4π
− m Λ

2π2 + O
(

1
Λ

)
.



Couplings c and c2 can be fixed by demanding that the scattering
length and the effective range are reproduced.

This leads to the amplitude

TΛ(q) = −
4iπa

[
4a Λ + π

(
aq2 re + 2

)]
m
[
π
(
a2q3 re + 2aq − 2i

)
+ 2a Λ(aq(2 + iq re)− 2i)

] .
This expression is finite in Λ→∞ limit:

T (q) = − 4π/m

−1
a + q2re

2 − iq
.

However ...



TΛ(q) is restricted by Wigner bound - cutoff cannot be taken very
large unless re ≤ 0 (otherwise c and c2 become complex).

S. R. Beane, T. D. Cohen and D. R. Phillips, Nucl. Phys. A 632, 445 (1998)

c(Λ) =
6π2

5Λ2m2
(
−16a2Λ2 + πaΛ

(
aΛ2re + 12

)
− 3π2

)
×

[
Λm

(
−64a2Λ2 + πaΛ

(
3aΛ2re + 62

)
− 18π2

)
+ 6

√
3
√
−4πa4Λ7m2re + 4a3Λ6m2

(
16a + π2re

)
+ · · ·

]
,

c2(Λ) = · · · .



Running coupling
We start with the most general U(1) locally gauge invariant effective
Lagrangian of the electron field ψ interacting with the e.m. field Aµ

L= −1
4

FµνFµν + ψ̄ (iD/ −m)ψ+
iκ
2
ψ̄(γµγν − γνγµ)ψ Fµν + Lho , (1)

where m is the electron mass, e is the e.m. charge,
Fµν = ∂µAν − ∂νAµ, Dµ = ∂µ − ieAµ and Lho contains an infinite
number of terms with operators of dimension six and higher.
We assume that the contributions of these terms in the photon
self-energy are suppressed compared to those of the Pauli term.

The standard QED describes the experimental data very well
because the contributions of higher order operators are beyond the
current accuracy of the data.
E.g. the calculated value of the anomalous magnetic moment of the
electron in QED agrees with the experiment very well suggesting
that the Pauli term is suppressed by a scale larger than 4× 107 GeV.



Running coupling eR(q2) can be defined by the following relation

Dµν(q) e2 = − 1
q2

(
gµν − qµqν

q2

)
e2

R(q2), (2)

where Dµν(q) is the dressed propagator of the bare photon field.

At one-loop order we obtain for −q2 � m2:

e2
R(q2) = e2

r

[
1− e2

r + 2κ2q2

12π2 ln
−q2

m2 + cR q2
]−1

. (3)

er is the renormalized coupling at q2 = −m2 for cR = 0, where cR is
a coupling of Lho, suppressed by two orders of some large scale.

For κ = cR = 0 the running coupling has the well-known pole
singularity at (the Landau pole)

q2
L = −m2 exp

[
12π2/e2

r

]
. (4)

While this pole appears at extremely high energies, it is still a
problem if present in the full theory.

For reasonable values of κ� 1/
√
−q2

L the Landau pole is absent
remedying the inconsistency at the level of an EFT.



In renormalizable theories only logarithmic divergences contribute to
the renormalization of coupling constants and therefore there is a
direct correspondence between the Gell-Mann-Low and the
Wilsonian RG approaches.

As a result, the presence of the Landau pole in the expression of the
running coupling authomatically leads to the pole in the bare
coupling as a function of the cutoff parameter.

However, in an EFT with non-renormalizable interactions the direct
link between the two RG equations is lost and therefore the
Wilsonian RG approach requires additional study of the cutoff
dependence.



Cutoff-dependent bare coupling

We investigate the cutoff dependence of the bare electromagnetic
coupling by applying the higher derivative regularization which
preserves the local U(1) gauge invariance.

L. D. Faddeev and A. A. Slavnov, “Gauge Fields. Introduction To
Quantum Theory,” Front. Phys. 50, 1 (1980) [Front. Phys. , 1 (1991)].

Dimensional regularization is not suitable here as it discards the
power-law divergences.

In addition to the fields in conventional QED, we introduce scalar
ghost fields ξ̄ and ξ which regulate the one-loop counter term
diagrams contributing to the photon self-energy at two-loop order.



The effective Lagrangian generating one and two-loop diagrams,
contributing to our calculation of the photon self-energy up to
two-loop e2κ2 order, which are all finite for finite Λ, is given by:

LHDR= −1
4

Fµν

(
1 +

∂2

Λ2

)2

Fµν

+
1
2
ψ̄ (iD/ −m)

(
1 +

D2

Λ2

)3

ψ + h.c.

+
1
2
ξ̄ (iD/ −m)

(
1 +

D2

Λ2

)3

ξ + h.c.

+
iκ
2
ψ̄(γµγν − γνγµ)ψ Fµν + Lho. (5)



The bare electromagnetic coupling as a function of the cutoff
satisfies a renormalization group equation which up to the level of
accuracy of our calculation has the form:

dα(Λ)

d ln Λ
= A1 α

2(Λ) + κ2α2(Λ) Λ2(2A2 + A3 + 2A3 ln Λ/m), (6)

where α(Λ) = e2/(4π), the coefficient A1 is given by one-loop
diagrams and A2 and A3 are extracted from two-loop calculations.

Notice that there are no power-law divergences at one-loop order
and all terms suppressed by powers of m/Λ have been dropped in
our calculations as they are negligible for large values of Λ.



The solution to Eq. (6) is given by

α(Λ) = α0

[
1− α0 ln

Λ

m

(
A1 + A3κ

2Λ2
)

+ α0 ln
Λ0

m

(
A1 + A3κ

2Λ2
0

)
− α0A2κ

2(Λ2 − Λ2
0)

]−1

, (7)

where α0 = α(Λ0) is the bare coupling at some fixed cutoff
m < Λ0 < Λ.
For Λ� Λ0 we have

α(Λ) = α0

[
1− α0 ln

Λ

m

(
A1+A3κ

2Λ2
)
− α0A2κ

2Λ2
]−1

. (8)

For κ = 0 and A1 positive α(Λ) has a pole at

ΛP = m exp
[ 1

A1α0

]
. (9)

This pole, if remaining in the full expressions of the bare coupling,
prevents the Λ→∞ limit unless α0 ≡ 0, thus leaving us with a
non-interacting theory.



Using FeynCalc

R. Mertig, M. Bohm and A. Denner, Comput. Phys. Commun. 64,
345 (1991).
V. Shtabovenko, R. Mertig and F. Orellana, Comput. Phys. Commun.
207, 432 (2016).

and Form

J. A. M. Vermaseren, math-ph/0010025.

and applying the method of dimensional counting of

J. Gegelia, G. S. Japaridze and K. S. Turashvili, Theor. Math. Phys.
101, 1313 (1994) [Teor. Mat. Fiz. 101, 225 (1994)].

we have calculated the logarithmically divergent contributions to the
photon self-energy generated by one-loop diagrams, and the
quadratic divergences generated by the two-loop diagrams and by
the corresponding counter term diagrams, shown below



Two-loop diagrams contributing in the photon self-energy



One loop counter term diagrams contributing in the photon
self-energy at two-loop order



Our results read:

A1=
2

3π
' 0.212,

A2= − 5491889
201600π3 +

1181
1296π

+
319ψ(1)

(1
6

)
648π3 ' 0.0040 ,

A3= − 7
40π3 ' −0.0056, (10)

where ψ(1) is the trigamma function.

For the above values of A1, A2 and A3, and for natural values of
κ� 1/ΛP, the A3 term is larger than the A1 and A2 terms and the
negative sign of A3 guarantees that α(Λ) has no pole.



Summary

I The problem of triviality in QED can be attributed to QED being
a leading order approximation of an effective field theory.

I Already at NLO, i.e. adding the Pauli term to QED, the Landau
pole and the pole in the bare coupling, as a function of the
cutoff, disappear thus obviating the need for QED to be trivial.

I While the triviality of QED is not a settled issue, from the
modern point of view which considers the Standard Model as
an EFT, the issue of triviality can be of academic interest only
as the higher order operators qualitatively change the UV
behavior of QED.


