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Outline

◮ Introduction: Compton scattering

◮ Nucleon in an external field

◮ Energy shift

◮ Discussion of the result

◮ Outlook
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Compton scattering
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• Two invariant amplitudes: T1(ν, q
2) and T2(ν, q

2), ν ≡ p · q/m

• Why important?

⊲ the proton-neutron mass difference

⊲ Lamb shift in the muonic hydrogen

⊲ the existence of a fixed pole in the Regge theory
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Cottingham formula

q

p p

• Electromagnetic contribution to the proton-neutron mass difference:

(mp−mn)em =
ie2

2m(2π)4

∫ Λ

d4qD(q2){3q2T1+(2ν2+q2)T2}+counter terms

⊲ D(q2) - photon propagator Cottingham (63)

• Electroproduction cross sections → T1,T2 (Q2 = −q2 > 0)
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Information on T1(ν,Q
2)

• T1(ν,Q
2) → once-subtracted dispersion relation (fixed Q2)

• A problem: S1(Q
2) ≡ T1(0,Q

2) is not fixed by experiment

S1(Q
2) = Sel

1 (Q2) + S inel
1 (Q2)

⊲ Sel
1 (Q2) → Born terms ( + nucleon FFs)

⊲ Low-energy theorem: S inel
1 (0) = − κ

2

4m2 −
m

αem

βM Scherer, Tarrach

→֒ βM – magnetic polarizability, κ = F2(0), αem ≈ 1/137

⊲ OPE: S1(Q
2 → ∞) = C

Q4 , C – known coefficient Collins, Hill

• Intermediate region 0 < Q2 . 2 GeV2: S inel
1 (Q2) is unknown
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Reggeon dominance hypothesis

• No fixed pole → energy-independent contribution (Reggeon exchange):

T1(ν,Q
2)− TR

1 (ν,Q2) → 0, ν → ∞ at fixedQ2

Gasser and Leutwyler (75)

Source: S. Brodsky et al., Phys.Rev. D79, 033012 (2009)

⊲ The s-channel amplitude

As(s,M) =
M2

M2 − s

As(s < M2,M) =
∑

J≥0

(−1)J
(

−
s

M2

)J

⊲ J = 0 → a fixed pole
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Theoretical approaches
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Source: J. Gasser et al., Eur. Phys. J. C 75, 375 (2015)

⊲ Chiral EFTs, NRQED BKM, Hill, Pineda . . .

⊲ Phenomenological Ansatzes Pachucki, Walker-Loud, . . .

⊲ Reggeon dominance hypothesis Gasser, Leutwyler, . . .

• Lattice QCD → devoid of any model dependence
7 / 16



Lattice QCD

• Path integral formulation in Euclidean space-time

• Space-time is discretized and finite ⇒ natural UV cut-off ∼ 1/a
K. G. Wilson (74)

• Numerical integration → Monte Carlo methods

• Correlation functions → energy levels, form factors

→֒ review by FLAG: S. Aoki et al., arXiv:1607.00299 (2016)
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Stable hadrons
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Source: BMW Collaboration, Science 322, 1224 (2008)

• Two-point correlation function:

C(t) =
∑

x

〈0|O(x, t)O†(0, 0)|0〉 = |ZO |
2
e
−mt

[

1 +
∑

n

|Zn|
2
e
−∆Ent

]

⊲ O(x, t) - field operator, ZO , Zn - overlap factors, ∆En > 0

• Effective mass: M(t) = 1
a
log C(t)

C(t+a) , M(t) → m
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Lattice QCD+QED
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Source: S. Borsanyi et al., Science 347 (2015) 1452

∆m [MeV] QCD [MeV] QED [MeV]

∆N = n − p 1.51(16)(23) 2.52(17)(24) -1.00(07)(14)

• The fully unquenched lattice QCD + QED computation

⊲ 4 non-degenerate flavors, mπ ≈ 195 MeV BMW Collaboration
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External field method

How to study the Compton scattering on the lattice?

◮ four-point function → Compton tensor

Tµν(p, q) =
1

2

∑

s

i

2

∫

d4xe iq·x〈p, s|Tjµ(x)jν(0)|p, s〉

◮ two-point function in an external em. field Aµ(x)

+ + +

: : :

+

Source: W. Detmold et al., Phys. Rev. D 73, 114505 (2006)

• Uniform magnetic field → polarizabilities NPLQCD

• Static magnetic field → energy levels, measured on the lattice
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Magnetic properties

Source: E. Chang et al. [NPLQCD Collaboration], Phys. Rev. D 92, 114502 (2015)

• Lattice calculation at one SU(3)-symm. point, mπ ≈ 806 MeV

• Constant magnetic field: B = 6π
eL2

ñ ez , ñ ∈ Z ’t Hooft (79)
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γ∗N → γ∗N : field configuration

N

V0

• Static periodic magnetic field B = (0, 0,B3):

A1 =
B

ω
sin(ωx2), A0 = A2 = A3 = 0

• Frequency ω 6= 0 → photon virtuality q2 = −ω2

• Magnetic flux is quantized ⇒ ω = 2πN
L

, N ∈ Z\{0}
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Energy shift

• For ν = 0 and q2 < 0 → S1(q
2) is real

• If V0 = e2B2/2mω2 is “small” ⇒ perturbation theory

• The free energy spectrum:

w(kn) =
√

m2 + k2n, kn =
2πn

L
, n ∈ Z

3

• Spin-averaged energy shift of the ground state (kn = 0):

δE = −
B2

4mω2
T 11(0, ω) + O(B3) =

B2

4m
S1(−ω2) + O(B3)

→֒finite-volume effects are neglected
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Zero frequency limit ω → 0

• Energy spectrum → Landau levels – non-perturbative transition

• Sel
1 (−ω2) explodes: Sel

1 (−ω2) ∼ 1/ω2 (propagator)

• Quantization of the magnetic flux:

◮ ω = 2πN
L

– quantized: L → ∞ – inconvenient

◮ B = 6πN
eL2

ωL
sin(ωL) , ω – arbitrary

• Lower bound: ω2
min = 0.13 GeV2 (p), ω2

min = 0.06 GeV2 (n)

• Numerical analysis is required

15 / 16



Outlook

• Energy shift in a finite volume X

• Numerical analysis of the constant field limit

• Disconnected contributions in partially quenched χPT

• Inclusive semi-leptonic B meson decays

Tµν ∝ i

∫

d4xe iqx〈B |TJ†µ(x)Jν(0)|B〉 → structure functions

→֒ Jµ – electroweak current for b → clν
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