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Plan of the talk

e Euclidean approach to metastable vacuum decay: QM & QFT
e Vacuum decay: inclusion of gravity
e Negative mode problem in tunnelling transitions with gravity

e Concluding remarks

2/23



Bounces and false vacuum decay

Figure 1: Tunneling in asymmetric double well potential.
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Euclidean approach to tunneling

In the semiclassicall approximation, summing multibounce configuration one finds correction to ground

state energy Fg = hw /2 in the following form
E = Ey— hKe /"1 4+ O(R)] (1)

where, S = [ dn[%(g—i)Q + V()] is the Euclidean action on the bounce solution Z(7) and
pre-exponential factor K is given by (Gaussian) integration of the exponential of quadratic action of linear

perturbations S(2) = 5 [ dnox[—82 + V"o,

B 1(i)1/2 det'[-0; + V" (z)]
- 2°'2rh det|—03 + w?]

)—1/2 . (2)

There is exactly one tunnelling negative mode in the spectrum of linear perturbations about the bounce
solution, since (translational) zero energy wave function 1y ~ g—i of corresponding Schrodinger equation

has a node. i.e. K = 1I.
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Finally, the decay probability per unit time of the unstable state is given by

I' = —2ImFE/h (3)
5 g det'[-05 + V" (z)] ~1/2 _—S/h
= G @ ey T Lol

In the 1988 NPB article “Quantum Tunneling And Negative Eigenvalues,” Coleman arrives to strong
conclusion: “There may exist solutions in other ways like bounces and which have more than one negative

eigenvalue, but, even if they do exist, they have nothing to do with tunnelling.”

These quantum mechanical results could be generalized for
e Field theory in flat space-time

e Field theory with gravity
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Scalar field in flat space-time

The decay rate per unit volume and unit time is

Scl [90]
2T

v =t vT = () DI exp (- Sale] - Sulel} @

to one-loop accuracy. The coefficient D here is defined as

det’'(—(0/07)? — A+ V" (p)) B det’ (M) -
det(—(0/07)2 — A +V"(0))  det(M©) " ()

The prime in the determinant implies omitting of the four translation zero modes. The counterterm action

Dlp] =

St is necessary in order to absorb the divergences of the one-loop effective action

. 1
S eoplel = 5 D[] ©

For details see e.g.:
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Inclusion of Gravity: Scalar field in curved space-time

The Euclidean action of system composed of scalar field minimally coupled to gravity is
4 1 1 L
S= [ dzyg |- R+ VupVio+V(9)| 7)
where Kk = 87 is the reduced Newton’s constant. For the O(4)—symmetric metric ansatz we will use
ds® = dn* + p*(n)dQ3 = a*(7)(dT* + dQ3) , (8)

where 1 is (Euclidean) proper time, 7- conformal time, p(n) is the scale factor and dQ% is metric of unit
three-sphere:
dQs = dx? + sin?x(df? + sin?()dy?) . 9)
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Corresponding field equations in the proper time are

b=+ V()

kp? @2

pr=1+—(5-V).

3 2

just Euclidean version of Friedmann equations.
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We assume that potential V' (¢) has characteristic asymmetric double-well shape with local minimum at

some ¢ = ¢@_, local maximum ¢, and global minimum ¢ :

Figure 2: Scalar field potential V' (¢).
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The metastable vacuum decay rate with gravity per unit volume and unit time is
y=Ae™",

where B = Sg(®bounce) — SE(Pralse) and A is pre-exponential factor.

In the thin wall approximation there are two important results
. dS — flat case, V(p_) =€, V(p1) = 0, gravity {} probability

By
[1+ (po/2M)%]?

II. Flat — AdS case, V(¢—) = 0,V (¢ ) = —¢, gravity |} probability

By
[1— (po/2M)?]?

B —

B =

(13)

(14)

(15)

where pg and By are bubble radius and decay coefficient in the absence of gravity and A = (ke/3) /2.
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Special classical solutions in Euclidean quantum gravity
Hawking and Moss (1982)

1. The Hawking-Moss solution is a 4-sphere corresponding to scalar field sitting on the top of the potential

barrier
¢(77) — ¢top7 :0(77) — Ht_o;) Sin(Htopn) ) (16)

with Hiop = \/mV(qbtop)/S. Note that the Euclidean time 7 varies in finite interval n = (0, 75 ).
Coleman and De Luccia (1980)
2. The Coleman-De Luccia bounce is a deformed 4-sphere. It starts with some ¢ = ¢ at 7 = 0 close to

@_, stops at 7 = 75 close to ¢4 and obeys the regularity conditions

p(0) = $(0) =0, p(ns) = ¢(ng) =0. (17)

Bousso and Linde (1998), Balek and Demetrian (2004)
Hackworth and Weinberg (2005)
B.-H. Lee, C. H. Lee, W. Lee and C. Oh (2010, 2012)
3. Oscillating bounces and instantons, solutions in which the scalar field passes over the barrier more
then once.
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Figure 3: CDL bounce and oscillating bounce solution with N=7 nodes of ¢, (a =n,a4 = p) :
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Negative mode problem

The Euclidean action of system composed of scalar field minimally coupled to gravity is
4 1 1
S= [ d'2y/g| -5 R+ 5VupVio +V(9)| (18)
where k = 87 is the reduced Newton’s constant. For the O(4)—symmetric metric ansatz we will use
ds* = dn? + p*(n)dQ; = a*(7)(dm* + dQ3) , (19)

where 1 is (Euclidean) proper time, 7- conformal time, p(n) is the scale factor and dﬂg) is metric of unit
three-sphere.
We expand the metric and the scalar field over a O(4)—symmetric background
ds® = a(7)? [(1 4 2A(7))d7T* + ;5 (1 — 2¥(7))dz"dz’ ],
¢ = 1)+ (1), (20)
where T is the conformal time, a and ¢ are the background field values and A, ¥ and $ are small

perturbations. "= d/dn, = d/dr.
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Expanding the total action to second order in perturbations and using the background equations of motion,

we find

S = 5O0a, ] + 9P[A, 0, 8], (21)

where S(9) is the action of the background solution and S(2) [A, v, <I>] is the quadratic action for scalar

O(4)—symmetric perturbations given by the Lagrangian:

1 52
L= —a?\ /7 [-602 4+ 6KT? + k(D2 + a? Y 52 4 60/ U’ D)
2K dpdp
— (2K ®" — 2/@@2(2—‘/@ + 12HY + 12K0)A — 2(H' +2H* + K)A?| .
©

Note that the variation with respect to A gives the first order (constraint) equation

oV
2k & — 2na25—q> + 12HU + 12K0 +4(H +2H* + K)A=0.
¥
To obtain unconstrained (physical) degree of freedom one should impose gauge condition and solve

constraints.
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In frame of the Hamiltonian approach, fixing the gauge by A = 0 , Iy = 0 one obtains unconstrained

quadratic action for one physical dynamical degree of freedom for IC = +1 as

(2] — 92 [ 3 Y 2
5918] = 2° [ o 559% + SULe(). o9 22
where the factor () was given by
2 :2
Q=1-=", (23)

and the potential U is expressed in terms of the bounce solution as

V')  2Kp? K
Q @ T3

The exact form of the fluctuation operator depends on the choice of a weight function, which can be

Ulip(n). pln)] = (6607 +9°V"™() = 5pppV ()] . (28

specified by defining a norm.
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When () > 0, after redefinition of variables corresponding Schrodinger equation (diagonalizing quadratic

action Eq. (22)) reads:
d2
Tk + Wip(n),e(n)lq = Eq, (25)

and it was shown to have one boundstate, i.e corresponding Coleman-De Luccia bounce has exactly one
negative mode.

16 /23



For general (), with the natural choice of the norm

D) = /d4x\/§<l>2 = 271'2/6177 p(n)® &2 . (26)

The fluctuation equation diagonalizing the quadratic action Eqg. (22) then has the form

1 d2® Q 3p )\ dP
_ - = v b =)\ 27
an“(@? pcz> a7 | 0

with the potential U given in Eq. (24). Note that the function () — 1 at the ends of the interval [0, 7:42),

but for some bounces it can become negative for some interval of 7.

Main results:

1. If Q > 0, one finds exactly one tunnelling negative mode for all bounces

2. If () becomes negative in some interval

a). Solution of pulsation equation and first derivative is regular across () = 0 points.

b). On top of one "tunneling” negative mode, an infinite tower of additional negative modes arise with
support in ) < 0 region.
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Example potential used by Lee & Weinberg (2014)
V(p) = B(p* —0.25)2 +0.1(p + 1), (28)

and corresponding factor () for different values of parameter B:

(@ B=2and B =3 (b) B = 3.22 (Q) < 0 briefly) (co B=5and B =10

Figure 4: The kinetic pre-factor Q(n) for the background potential (28) and different values of B. For
B =~ 3.22 the factor () becomes negative along some interval of Euclidean time 7.
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Other recent results

Working in Lagrangian approach with gauge invariant variable ‘y,
K ,02 Sb2 B i pz
=1-—--V,
6 3

Lee and Weinberg solved numerically with Mathematica pulsation equation for concrete potentials and

x = p® — pp¥ and factor Qrrr = p° — (29)

arrived to conclusion that type A bounces have tunneling negative mode whereas type B bounces don't!
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Figure 5: Type A bounces (left panel) and type B (right panel).
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Historical Summary of the negative mode problem

Year / Authors

Tunneling negative mode

Additional negative modes

1985, G.L., Rubakov Tinyakov Not discussed

Infinitely many

1992, Tanaka, Sasaki

None

None

2000, Khvedelidze, G.L., Tanaka | One

Not discussed (only () > 0 case)

2000, Gratton, Turok

One

Not discussed (only () > 0 case)

2006, G.L.

N for the N-th oscillating bounce

Not discussed (only () > 0 case)

2014, Lee, Weinberg

One for type A / None for type B

Infinitely many

2015, Koehn, G.L., Lehners One

Infinitely many in () < O case

Tab 1. Conclusion about the number of negative modes reached in different investigations.
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Concluding remarks

1. We have found that with the proper reduction scheme CdL solution has exactly one negative mode for

() > 0 backgrounds, as it should be for proper bounce.

2. The oscillating instantons and bounces with N nodes have exactly N homogeneous negative modes in
their spectrum of linear perturbations. Existence of more than one negative modes makes obscure the

relation of these oscillating bounce solutions to the false vacuum decay processes.

3. When () < 0 along the bounce:
a). Solution of pulsation equation is smooth across () = 0 points.
b). Single tunneling negative mode continues to exist.

c). Additional, infinite number of negative modes uppears.

Challenge:
- How to interpret an infinite tower of additional negative modes for () < 0 cases:

Their existence and significance remain mysterious even after more than 30 years.
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Thank you for attention!
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The | approach (Lagrangian):
Fixing the gauge with the condition ¥ = (0 and eliminating A with the help of the constraint equation we

obtain the unconstrained quadratic action in the form

g(2) _/ vl [HZcp/z K oV o

LR | 2QLrr | a2 3 0p
ka® 0V ., 6%V
d?| drd’® 30
( c (590) +QLRT5¢5¢) ] rd’r, (30)
with
, k' Ka?
QLRT::H _T:K—YV (31)
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The Il approach (Hamiltonian):
Fixing the gauge by ® = 0 and eliminating 11 (matter degrees of freedom), after some canonical

transformation one gets the quadratic part of the Euclidean action (/C is the curvature parameter):

1 —4K d
S(2) — ( )/[( q) +Ug }fdgilde (32)
2 dr
with a potential U depending on the background fields
1

We see that quadratic action for the homogeneous harmonic has “wrong” overall sign. To overcome this
problem it was suggested that analytic continuation ¢ — —iq is performed while integrating over this

mode.
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Figure 6: Oscillating bounce solution with three nodes of ©.
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Figure 7: Zero energy wave function f of Schrédinger equation of linear perturbations about oscillating

bounce solution with three nodes of .
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Note that by definition at the local maximum, ¢, the second derivative of potential is negative,
V//((ptop) < O.

For —4 < % < (0 CDL bounce does not exists and HM has one negative modes.
top
For % < —4 CDL comes to existence and has one negative mode, whereas HM gets extra

top
negative modes.
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