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Plan of the talk

• Euclidean approach to metastable vacuum decay: QM & QFT

• Vacuum decay: inclusion of gravity

• Negative mode problem in tunnelling transitions with gravity

• Concluding remarks
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Bounces and false vacuum decay

Coleman (1977)

x x

V −V

Figure 1: Tunneling in asymmetric double well potential.
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Euclidean approach to tunneling

Coleman (1977)

In the semiclassicall approximation, summing multibounce configuration one finds correction to ground

state energy E0 = ~ω/2 in the following form

E = E0 − ~Ke−S/~[1 +O(~)] , (1)

where, S =
∫
dη[ 12 (

dx
dη )

2 + V (x)] is the Euclidean action on the bounce solution x̄(η) and

pre-exponential factor K is given by (Gaussian) integration of the exponential of quadratic action of linear

perturbations S(2) = 1
2

∫
dηδx[−∂2η + V ′′]δx,

K =
1

2
(
S

2π~
)1/2(

det′[−∂2η + V ′′(x̄)]

det[−∂2η + ω2]
)−1/2 . (2)

There is exactly one tunnelling negative mode in the spectrum of linear perturbations about the bounce

solution, since (translational) zero energy wave function ψ0 ∼ dx̄
dη of corresponding Schrödinger equation

has a node. i.e. K = iΓ.
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Finally, the decay probability per unit time of the unstable state is given by

Γ = −2ImE/~ (3)

= (
S

2π~
)1/2|det

′[−∂2λ + V ′′(x̄)]

det[−∂2λ + ω2]
|−1/2 e−S/~ [1 +O(~)] .

In the 1988 NPB article “Quantum Tunneling And Negative Eigenvalues,” Coleman arrives to strong

conclusion: “There may exist solutions in other ways like bounces and which have more than one negative

eigenvalue, but, even if they do exist, they have nothing to do with tunnelling.”

These quantum mechanical results could be generalized for

• Field theory in flat space-time Frampton (1976); Coleman, Callan and Coleman (1977)

• Field theory with gravity Coleman and De Luccia (1980)
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Scalar field in flat space-time

The decay rate per unit volume and unit time is

γ = Γ/V T =

(
Scl[φ]

2π

)2

|D|−1/2
exp {−Scl[φ]− Sct[φ]} , (4)

to one-loop accuracy. The coefficient D here is defined as

D[φ] ≡ det′(−(∂/∂τ)2 −∆+ V ′′(φ))

det(−(∂/∂τ)2 −∆+ V ′′(0))
=

det′(M)

det(M(0))
. (5)

The prime in the determinant implies omitting of the four translation zero modes. The counterterm action

Sct is necessary in order to absorb the divergences of the one-loop effective action

Seff
1−loop[φ] =

1

2
ln |D[φ]| . (6)

For details see e.g.:

G. Isidori, A. Strumia et all, 2001, 2008, 2012;

J. Baacke and G.L., 2004;

G.V. Dunne et all, 2005, 2006, 2008.
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Inclusion of Gravity: Scalar field in curved space-time

The Euclidean action of system composed of scalar field minimally coupled to gravity is

S =

∫
d4x

√
g

[
− 1

2κ
R+

1

2
∇µϕ∇µϕ+ V (ϕ)

]
, (7)

where κ = 8πG is the reduced Newton’s constant. For the O(4)−symmetric metric ansatz we will use

ds2 = dη2 + ρ2(η)dΩ2
3 = a2(τ)(dτ2 + dΩ2

3) , (8)

where η is (Euclidean) proper time, τ - conformal time, ρ(η) is the scale factor and dΩ2
3 is metric of unit

three-sphere:

dΩ2
3 = dχ2 + sin2χ(dθ2 + sin2(θ)dφ2) . (9)
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Corresponding field equations in the proper time are

ϕ̈+ 3
ρ̇

ρ
ϕ̇ =

∂V

∂ϕ
, (10)

ρ̈ = −κρ
3
(ϕ̇2 + V (ϕ)) , (11)

ρ̇2 = 1 +
κρ2

3
(
ϕ̇2

2
− V ) . (12)

just Euclidean version of Friedmann equations.
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We assume that potential V (ϕ) has characteristic asymmetric double-well shape with local minimum at

some ϕ = ϕ−, local maximum ϕtop and global minimum ϕ+:

-1 1 2 3 4
ϕ

5

10

15

V

Figure 2: Scalar field potential V (ϕ).
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Coleman and De Luccia (1980)

The metastable vacuum decay rate with gravity per unit volume and unit time is

γ = Ae−B , (13)

where B = SE(ϕbounce)− SE(ϕfalse) and A is pre-exponential factor.

In the thin wall approximation there are two important results

I. dS → flat case, V (φ−) = ϵ, V (φ+) = 0, gravity ⇑ probability

B =
B0

[1 + (ρ0/2Λ)2]2
(14)

II. Flat → AdS case, V (φ−) = 0, V (φ+) = −ϵ, gravity ⇓ probability

B =
B0

[1− (ρ0/2Λ)2]2
(15)

where ρ0 and B0 are bubble radius and decay coefficient in the absence of gravity and Λ = (κϵ/3)−1/2.
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Special classical solutions in Euclidean quantum gravity

Hawking and Moss (1982)

1. The Hawking-Moss solution is a 4-sphere corresponding to scalar field sitting on the top of the potential

barrier

ϕ(η) = ϕtop, ρ(η) = H−1
top sin(Htopη) , (16)

with Htop =
√
κV (ϕtop)/3. Note that the Euclidean time η varies in finite interval η = (0, ηf ).

Coleman and De Luccia (1980)

2. The Coleman-De Luccia bounce is a deformed 4-sphere. It starts with some ϕ = ϕ0 at η = 0 close to

ϕ−, stops at η = ηf close to ϕ+ and obeys the regularity conditions

ρ(0) = ϕ̇(0) = 0, ρ(ηf ) = ϕ̇(ηf ) = 0 . (17)

Bousso and Linde (1998), Balek and Demetrian (2004)

Hackworth and Weinberg (2005)

B.-H. Lee, C. H. Lee, W. Lee and C. Oh (2010, 2012)

3. Oscillating bounces and instantons, solutions in which the scalar field passes over the barrier more

then once.
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Figure 3: CDL bounce and oscillating bounce solution with N=7 nodes of ϕ, (σ ≡ η, a ≡ ρ) .
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Negative mode problem

The Euclidean action of system composed of scalar field minimally coupled to gravity is

S =

∫
d4x

√
g

[
− 1

2κ
R+

1

2
∇µϕ∇µϕ+ V (ϕ)

]
, (18)

where κ = 8πG is the reduced Newton’s constant. For the O(4)−symmetric metric ansatz we will use

ds2 = dη2 + ρ2(η)dΩ2
3 = a2(τ)(dτ2 + dΩ2

3) , (19)

where η is (Euclidean) proper time, τ - conformal time, ρ(η) is the scale factor and dΩ2
3 is metric of unit

three-sphere.

We expand the metric and the scalar field over a O(4)−symmetric background

ds2 = a(τ)2
[
(1 + 2A(τ))dτ2 + γij(1− 2Ψ(τ))dxidxj

]
,

ϕ = φ(τ) + Φ(τ), (20)

where τ is the conformal time, a and φ are the background field values and A,Ψ and Φ are small

perturbations. ˙≡ d/dη,′ ≡ d/dτ .
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Expanding the total action to second order in perturbations and using the background equations of motion,

we find

S = S(0)[a, φ] + S(2)[A,Ψ,Φ] , (21)

where S(0) is the action of the background solution and S(2)[A,Ψ,Φ] is the quadratic action for scalar

O(4)−symmetric perturbations given by the Lagrangian:

(s)L =
1

2κ
a2
√
γ
[
−6Ψ′2 + 6KΨ2 + κ(Φ′2 + a2

δ2V

δφδφ
Φ2 + 6φ′Ψ′Φ)

−(2κφ′Φ′ − 2κa2
δV

δφ
Φ+ 12HΨ′ + 12KΨ)A− 2(H′ + 2H2 +K)A2

]
.

Note that the variation with respect to A gives the first order (constraint) equation

2κφ′Φ′ − 2κa2
δV

δφ
Φ+ 12HΨ′ + 12KΨ+ 4(H′ + 2H2 +K)A = 0 .

To obtain unconstrained (physical) degree of freedom one should impose gauge condition and solve

constraints.
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Khvedelidze, G.L., Tanaka (2000)

In frame of the Hamiltonian approach, fixing the gauge by A = 0 ,ΠΨ = 0 one obtains unconstrained

quadratic action for one physical dynamical degree of freedom for K = +1 as

S
(2)
E [Φ] = 2π2

∫
ρ3(η)dη

[ 1

2Q(η)
Φ̇2 +

1

2
U [φ(η), ρ(η)]Φ2

]
, (22)

where the factor Q was given by

Q := 1− κρ2φ̇2

6
, (23)

and the potential U is expressed in terms of the bounce solution as

U [φ(η), ρ(η)] ≡ V ′′(φ)

Q
+

2κφ̇2

Q
+

κ

3Q2

(
6ρ̇2φ̇2 + ρ2V ′2(φ)− 5ρρ̇φ̇V ′(φ)

)
. (24)

The exact form of the fluctuation operator depends on the choice of a weight function, which can be

specified by defining a norm.
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Khvedelidze, G.L. and Tanaka (2000)

G.L. (2000)

Gratton and Turok (2001)

When Q > 0, after redefinition of variables corresponding Schrödinger equation (diagonalizing quadratic

action Eq. (22)) reads:

− d2

dη2
q +W [ρ(η), φ(η)]q = Eq , (25)

and it was shown to have one boundstate, i.e corresponding Coleman-De Luccia bounce has exactly one

negative mode.
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Koehn, G.L. and Lehners (2015)

For general Q, with the natural choice of the norm

||Φ||2 ≡
∫
d4x

√
g Φ2 = 2π2

∫
dη ρ(η)3 Φ2 . (26)

The fluctuation equation diagonalizing the quadratic action Eq. (22) then has the form

− 1

Q

d2Φ

dη2
+

(
Q̇

Q2
− 3ρ̇

ρQ

)
dΦ

dη
+ UΦ = λΦ , (27)

with the potential U given in Eq. (24). Note that the function Q→ 1 at the ends of the interval [0, ηmax],

but for some bounces it can become negative for some interval of η.

Main results:

1. If Q > 0, one finds exactly one tunnelling negative mode for all bounces

2. If Q becomes negative in some interval

a). Solution of pulsation equation and first derivative is regular across Q = 0 points.

b). On top of one ”tunneling” negative mode, an infinite tower of additional negative modes arise with

support in Q < 0 region.
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Example potential used by Lee & Weinberg (2014)

V (φ) = B(φ2 − 0.25)2 + 0.1(φ+ 1) , (28)

and corresponding factor Q for different values of parameter B:
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Figure 4: The kinetic pre-factor Q(η) for the background potential (28) and different values of B. For

B ≈ 3.22 the factor Q becomes negative along some interval of Euclidean time η.
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Other recent results

Hakjoon Lee and Erick Weinberg (2014)

Working in Lagrangian approach with gauge invariant variable χ,

χ ≡ ρ̇Φ− ρφ̇Ψ and factor QLRT := ρ̇2 − κρ2φ̇2

6
= 1− κρ2

3
V , (29)

Lee and Weinberg solved numerically with Mathematica pulsation equation for concrete potentials and

arrived to conclusion that type A bounces have tunneling negative mode whereas type B bounces don’t!

Figure 5: Type A bounces (left panel) and type B (right panel).
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Historical Summary of the negative mode problem

Year / Authors Tunneling negative mode Additional negative modes

1985, G.L., Rubakov Tinyakov Not discussed Infinitely many

1992, Tanaka, Sasaki None None

2000, Khvedelidze, G.L., Tanaka One Not discussed (only Q > 0 case)

2000, Gratton, Turok One Not discussed (only Q > 0 case)

2006, G.L. N for the N-th oscillating bounce Not discussed (only Q > 0 case)

2014, Lee, Weinberg One for type A / None for type B Infinitely many

2015, Koehn, G.L., Lehners One Infinitely many in Q < 0 case

Tab 1. Conclusion about the number of negative modes reached in different investigations.
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Concluding remarks

1. We have found that with the proper reduction scheme CdL solution has exactly one negative mode for

Q > 0 backgrounds, as it should be for proper bounce.

2. The oscillating instantons and bounces with N nodes have exactly N homogeneous negative modes in

their spectrum of linear perturbations. Existence of more than one negative modes makes obscure the

relation of these oscillating bounce solutions to the false vacuum decay processes.

3. When Q < 0 along the bounce:

a). Solution of pulsation equation is smooth across Q = 0 points.

b). Single tunneling negative mode continues to exist.

c). Additional, infinite number of negative modes uppears.

Challenge:

- How to interpret an infinite tower of additional negative modes for Q < 0 cases:

Their existence and significance remain mysterious even after more than 30 years.
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Thank you for attention!

23 / 23



G.L., Rubakov, Tinyakov (1985)

The I approach (Lagrangian):

Fixing the gauge with the condition Ψ = 0 and eliminating A with the help of the constraint equation we

obtain the unconstrained quadratic action in the form

S
(2)
LRT =

∫
a4
√
γ

2QLRT

[
H2

a2
Φ′2 − κφ′

3

δV

δφ
Φ′Φ

+

(
κa2

6
(
δV

δφ
)2 +QLRT

δ2V

δφδφ

)
Φ2

]
dτd3x, (30)

with

QLRT := H2 − κφ′2

6
= K − κa2

3
V . (31)
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Tanaka and Sasaki (1992)

The II approach (Hamiltonian):

Fixing the gauge by Φ = 0 and eliminating ΠΦ (matter degrees of freedom), after some canonical

transformation one gets the quadratic part of the Euclidean action (K is the curvature parameter):

S(2) =
(1− 4K)

2

∫ [
(
dq

dτ
)2 + Uq2

]√
γd3xdτ , (32)

with a potential U depending on the background fields

U =
κ

2
φ′2 + φ′(

1

φ′ )
′′ + 1− 4K . (33)

We see that quadratic action for the homogeneous harmonic has “wrong” overall sign. To overcome this

problem it was suggested that analytic continuation q → −iq is performed while integrating over this

mode.
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Figure 6: Oscillating bounce solution with three nodes of φ.
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Figure 7: Zero energy wave function f of Schrödinger equation of linear perturbations about oscillating

bounce solution with three nodes of φ.
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Note that by definition at the local maximum, φtop, the second derivative of potential is negative,

V ′′(φtop) < 0.

For −4 <
V ′′(φtop)

H2
top

< 0 CDL bounce does not exists and HM has one negative modes.

For
V ′′(φtop)

H2
top

< −4 CDL comes to existence and has one negative mode, whereas HM gets extra

negative modes.
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