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What is a ρ meson?

▶ Experimentalist version : Some bump in a ππ distribution

Left: current source for B− → D0ρ− (CLEO). Right: B→ Dπ+π− (LHCb).

▶ Theorist version : A pole in some correlation function

Im
[ ∫

d4x eiq·x⟨0|T{jµ(x), jµ(0)}|0⟩
]
∼ δ(q2 −m2

ρ) · f2ρ + · · ·

▶ Be not surprised that: Experimentalist version ̸= Theorist version
1/19



Why do we care?

▶ Measurement of Vub(
B→ ρ ℓν

Bs → K⋆ℓν

)
−→ Really are

(
B→ ππ ℓν

Bs → Kπ ℓν

)

▶ Rare penguin decays (NP)(
B→ ρ ℓℓ

B→ K⋆ℓℓ

)
−→ Really are

(
B→ ππ ℓℓ

B→ Kπ ℓℓ

)

▶ quasi-two-body decays (α, CP violation, NP ... ) B→ ρπ

B→ K⋆π
· · ·

 −→ Really are

 B→ πππ

B→ Kππ
· · ·


▶ Huge experimental programs for these modes at LHCb and Belle-2
Huge data sets will require theory precision.
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Main theory objects

B→ ρ form factors ←− · · · −→ B→ ππ form factors

⟨ρ|q̄(x)Γb(0)|B̄⟩ ⟨ππ|q̄(x)Γb(0)|B̄⟩

ρ-LCDAs... ←− · · · −→ 2π-LCDAs...

⟨ρ|q̄(x)Γq(0)|0⟩x2→0 ⟨ππ|q̄(x)Γq(0)|0⟩x2→0

... their normalization fρ ←− · · · −→ ... their normalization Fπ(s)

... their moments aρn ←− · · · −→ ... their moments Bnℓ(s)

OUTLINE of the talk:

▷ B→ ρ and B→ ππ form factors from B-meson LCSRs
▷ B→ ππ form factors from 2π LCDAs
▷ Some extensions
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QCD Sum Rules : crash course

▶ Imagine you have some correlation function

Π(q2, . . . ) =
∫
d4x eiq·x ⟨α|T{j1(x), j2(0)}|β⟩

with (only) a cut for real q2 > sth, and calculable via some OPE at q2 = q̄2.

▶ One can write a dispersion relation:

ΠOPE(q̄2, . . . ) =
1
π

∫ ∞

sth
ds ImΠ(s, . . . )

s− q̄2

▶ The L.H.S. can be calculated perturbatively (by assumption) in conjunction
with a power expansion, and the R.H.S. is given by unitarity:

2ImΠ(s) = (2π)δ(s−m2
λ)⟨α|j1|λ⟩⟨λ|j2|β⟩+ higher states

▶ Finally, a Borel Transformation q̄2 → M2 + duality takes care of possible
subtractions, convergence of the OPE and higher states:

ΠOPE(M2, . . . ) = ⟨α|j1|λ⟩⟨λ|j2|β⟩e−m2λ/M2
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B→ ρ form factors from B-meson LCDAs Khodjamirian, Mannel, Offen 2006

▶ Correlation function

Fµ(k, q) = i
∫
d4xeik·x⟨0|T{d̄(x)γµu(x), ū(0)imbγ5b(0)}|B̄0(q+ k)⟩

▶ Unitarity relation

2ImFµ(k, q) =
∑
λ

(2π)δ(k2 −m2
ρ) ⟨0|d̄γµu|ρλ(k)⟩︸ ︷︷ ︸

mρfρ ε(λ)µ

⟨ρλ(k)|ūimbγ5b|B̄0(q+ k)⟩︸ ︷︷ ︸
(ε(λ)⋆·q) ABρ0 (q2)

+ · · ·

= qµ 4πmρ fρ ABρ0 (q2) + · · ·

▶ Dispersion relation + LCOPE + Borel + duality

2mρ fρ ABρ0 (q2) e−m
2
ρ/M

2
= FOPE(M2,q2)

FOPE(M2, q2) = fBm2
Bmb

{∫ σ2π0

0
dσ e−s(σ,q2)/M2

[
σ

σ̄
ϕB−(σmB)−

Φ̄B
±(σmB)

σ̄mB

]
+∆ABV0 (q2, σ2π0 ,M2)

}
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B→ ππ form factors from B-meson LCDAs Cheng, Khodjamirian, JV, 1701.01633

▶ Correlation function

Fµ(k, q) = i
∫
d4x eik·x⟨0|T{d̄(x)γµu(x), ū(0)imbγ5b(0)}|B̄0(q+ k)⟩

▶ Unitarity relation

2ImFµ(k, q) = mb

∫
dτ2π ⟨0|d̄γµu|π(k1)π(k2)⟩︸ ︷︷ ︸

F⋆π(k2)

⟨π(k1)π(k2)|ūγ5b|B̄0(q+ k)⟩︸ ︷︷ ︸
Ft(k2,q2,cos θπ)

+ · · ·

= qµ
s
√
q2[βπ(s)]2

4
√
6π
√
λ

F⋆π(k2) F(ℓ=1)t (k2, q2) + · · ·

Corollary : F⋆π(s) F(ℓ=1)t (s, q2) is real for all s < 16m2
π ⇒

Phase(FB→ππ
P−wave) = Phase(vector pion form factor)

Important for CP violation!!! [See also Kang, Kubis, Hanhart, Meissner '13]
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B→ ππ form factors from B-meson LCDAs Cheng, Khodjamirian, JV, 1701.01633

▶ Dispersion relation + LCOPE + Borel + duality

−
∫ s2π0

4m2π
ds e−s/M2 s

√
q2 [βπ(s)]2

4
√
6π2

√
λ

F⋆π(s) F
(1)
t (s, q2) = FOPE(M2, q2)

▶ ρ-dominance + zero-width limit:

F⋆π(s) ≃
fρgρππmρ/

√
2

m2
ρ − s+ i

√
2Γρ(s)

, F(1)t (s, q2) ≃ −βπ(s)
√
λ√

3q2
mρgρππABρ0 (q2)

m2
ρ − s− i

√
2Γρ(s)

LHS = 2fρmρABρ0 (q2)
∫ s2π0

4m2π
ds e−s/M2

[ √
s Γρ(s)/π

(m2
ρ − s)2 + sΓ2ρ(s)

]
︸ ︷︷ ︸

Γρ→0−−−→ δ(s−m2ρ)

Γρ→0
−−−→ 2fρmρABρ0 (q2) e−m2ρ/M

2

hep-ph/0611193 ✓
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B→ ππ form factors from B-meson LCDAs Cheng, Khodjamirian, JV, 1701.01633

▶ The same for other (axial-)vector form factors

i⟨π+(k1)π0(k2)|ūγν(1− γ5)b|B̄0(p)⟩ = F⊥(k2, q2, q · k)
2√
k2
√
λ
iϵναβγ qα kβ k̄γ

+Ft(k2, q2, q · k)
qν√
q2

+ F0(k2, q2, q · k)
2
√
q2√
λ

(
kν −

k · q
q2 qν

)

+F∥(k2, q2, q · k)
1√
k2
(
kν −

4(q · k)(q · k)
λ

kν +
4k2(q · k)

λ
qν
)

Similar sum rules and good narrow-width limit
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B→ ππ form factors from B-meson LCDAs Cheng, Khodjamirian, JV, 1701.01633

▶ Main input to the sum rule: Vector pion form factor Fπ(s)

Belle 0805.3773

▶ Other inputs : fB, λB, M2, sth0 . 9/19



B→ ππ form factors from B-meson LCDAs Cheng, Khodjamirian, JV, 1701.01633

Probing resonance models for B→ ππ form factors

▶ Sum-rules contains weighted integral of form factors
⇒ useful to constrain models

E.g. Three-resonance model :

F(ℓ=1)t (s, q2) = −βπ(s)
√
λ√

3
√
q2

∑
ρ,ρ′,ρ”

mR gRππ ABR0 (q2) eiϕR(s,q
2)[

m2
R − s− i

√
s ΓR(s)

]

and similar for F⊥, F∥, F0.
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B→ ππ form factors from B-meson LCDAs Cheng, Khodjamirian, JV, 1701.01633

▶ One-resonance : Finite-width effects in B→ ρ form factors

VBρ(0) ABρ1 (0) ABρ2 (0) ABρ0 (0)

Inputs of KMO'06 0.31 0.23 0.19 0.26
Updated inputs 0.34 0.26 0.21 0.30
Gaussian scan 0.36± 0.17 0.27± 0.13 0.22± 0.15 0.30± 0.06

BSZ'15 (ρ-DAs) 0.33± 0.03 0.26± 0.03 0.23± 0.04 0.36± 0.04

Full Fπ , M2 = 1GeV2 0.40± 0.19 0.30± 0.14 0.24± 0.16 0.33± 0.07
Final results for ρ-model 0.41± 0.11 0.31± 0.08 0.25± 0.10 0.34± 0.04

⇒ Finite-width effects at the level of ∼ 10%

11/19



B→ ππ form factors from B-meson LCDAs Cheng, Khodjamirian, JV, 1701.01633

▶ Other models with two or three resonances :

The suppression of Fπ outside the ρ hinders sensitivity to ρ′, ρ”. 12/19



Generalized Distribution Amplitudes Polyakov'98, and others

▶ Definition: [k12 = k1 + k2 ; s = k212 ; k1 = ζk12 ; k2 = (1− ζ)k12]

Φ∥(u, ζ, s) =
∫

dx−
2π eiu(k

+
12x

−)⟨π+(k1)π0(k2)|ū(x−n−)/n+d(0)|0⟩

▶ Normalization (local correlator):∫
duΦ∥(u, ζ, s) = (2ζ − 1) Fπ(s) (pion vector FF)

▶ Double Gegenbauer + Partial Wave Expansion:

ΦI=1
∥ (u, ζ, k2) = 6uū

∞∑
n=0,2,···

n+1∑
ℓ=1,3,···

B∥
nℓ(k

2) C3/2n (u− ū)βπ(k2)P(0)ℓ (cos θπ)

where B∥
01(k2) = Fπ(k2)
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B→ ππ form factors from 2π-LCDAs Cheng, Khodjamirian, JV, 1709.00173

▶ Correlation function

Π5(p2, k2, q2, q · k̄) = i
∫
d4x eiq·x⟨π+(k1)π0(k2)|T{ū(x)imbγ5b(x), b̄(0)imbγ5d(0)}|0⟩

▶ Unitarity relation

2ImΠ5 = (2π)δ(p2 −m2
B) ⟨π+(k1)π0(k2)|ūimbγ5b|B̄(p)⟩︸ ︷︷ ︸√

q2Ft(q2,k2,q·k)

⟨B̄(p)|b̄imbγ5d|0⟩︸ ︷︷ ︸
m2BfB

+ · · ·

= (2π) δ(p2 −m2
B)m2

B fB
√
q2 Ft(q2, k2, q · k) + · · ·

▶ Dispersion relation + LCOPE + Borel + duality

m2
B fB
√
q2 Ft(q2, k2, q · k̄) e−m2B/M

2
= Π5

OPE(M2, q2, k2, q · k̄)
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B→ ππ form factors from 2π-LCDAs Cheng, Khodjamirian, JV, 1709.00173

▶ In this case:

Π5
OPE(M2, q2, k2, q · k̄) = m2

b√
2

∫ 1

u0

du
u2 e

−s(u)/M2 (m2
b − q2 + u2k2) ΦI=1

∥ (u, q · k̄, k2)

▶ SUM RULE :√
q2Ft(q2, k2, ζ) =

m2
b√

2m2
BfB

∫ 1

u0

du
u2 e

m2B−s(u)
M2 (m2

b − q2 + u2k2) ΦI=1
∥ (u, ζ, k2)

▶ Gegenbauer + Partial Wave Expansions :

√
q2F(ℓ)t (q2, k2) = −

6m2
b√

2fBm2
B

βπ(k2)√
2ℓ+ 1

∞∑
(
n=ℓ−1
n even

)B∥nℓ(k2)
∫ 1

u0

du
u
ū e

m2B−s(u)
M2 (m2

b − q2 + u2k2) C3/2n (u− ū)

▶ B∥
01(k2) = Fπ(k2) -- but for the sum rule we need higher moments.

▶ B∥
n1(k2) for n > 0 not known
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B→ ππ form factor ( Fℓ=1t )

Cheng, Khodjamirian, JV, 1709.00173 Cheng, Khodjamirian, JV, 1701.01633
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▶ Both approaches give consistent results

▶ These results complement Hambrock, Khodjamirian 2015 for F⊥, F∥
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B→ Kπ form factors

▶ Extension to B→ Kπ -- Relevant for B→ K∗ℓℓ Deskotes-Genon, Khodjamirian, JV, w.i.p.

∫ s2π0

4m2π
ds e−s/M2

√
q2 λK

4
√
6π2 s

√
λ
F⋆Kπ(s) F(ℓ=1)t (s, q2) = −fBm2

Bmb ABV0 OPE(q2, σ2π0 ,M2)

Recovers ππ case when λK → s2[βπ(s)]2.

▶ More complicated for F0 :

∫ s2π0

4m2π
ds e−s/M2 λ

3/2
K

2
√
6π2s5/2λ

F⋆Kπ(s)
[
(m2

B − q2 − s)
2 F(ℓ=1)∥ (s, q2) + s3/2

√
q2

λ
1/2
k

F(ℓ=1)0 (s, q2)

+

√
3(m2

K −m2
π)q2s√

λλk

∞∑
ℓ=1

I0ℓ F(ℓ)∥ (s, q2)
]
= fBmB ABV2, OPE(q2, σ2π0 ,M2)

Mixes partial waves.
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Non-local effects in B→ K∗(→ Kπ)ℓℓ

Hµ(q, k) ≡ i
∫

d4x eiq·x ⟨K̄(k1)π(k2)|T{J µ
em(x), CiOi(0)}|B̄(k+ q)⟩

Khodjamirian, Mannel, Wang 2012

Can do the same generalization in non-local MEs as in form factors!
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Summary

▶ Describe B decays to unstable particles in terms of their underlying
multi-body decays

▶ LCSRs provide a means to perform this generalization

▶ E.g. we can estimate finite-width effects of O(10%) in B→ ρ form factors

▶ Other applications underway. Good potential.
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