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What is a p meson?

Numbe

» Experimentalist version : Some bump in a 7w distribution
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Left: current source for B~ — Dp~ (CLEO).

» Theorist version : A pole in some correlation function
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Right: B — Dzt~ (LHCh).
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» Be not surprised that: Experimentalist version # Theorist version
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Why do we care?

» Measurement of Vp
B— plv . Really are B — wmwlv
Bs — K+t g Bs — Krr fv
» Rare penguin decays (NP)
B— ptt _ Really are B — w0l
B - K*t¢ Y B = Kr £
» quasi-two-body decays («, CP violation, NP ... )

B — pm B — mrm
B— K*m | — Really are B — K

» Huge experimental programs for these modes at LHCb and Belle-2

Huge data sets will require theory precision. /
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Main theory objects

B — p form factors — s — B — wm form factors
(pla(x)rb(0)|B) (m|G(x)rb(0)|B)
p-LCDAs... — . — 2m-LCDAs...
(p1a(x)ra(0)|0)e 0 (rm|g(x)ra(0)[0)e—0
.. their normalization f, <«—--- — .. their normalization F(s)
... their moments aff — e — .. their moments Bye(S)

OUTLINE of the talk:

B — p and B — wx form factors from B-meson LCSRs
B — 7w form factors from 2w LCDAs

Some extensions
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QCD Sum Rules : crash course

» Imagine you have some correlation function
ne,...)= / d*x e (| T{j1(x), j2(0)}18)

with (only) a cut for real g> > sy, and calculable via some OPE at g° = G°.

» One can write a dispersion relation:

Norr(q’,...) = il / dsfhnl’l(s,_.z. )
w Sth s—q

» The L.H.S. can be calculated perturbatively (by assumption) in conjunction
with a power expansion, and the R.H.S. is given by unitarity:

2ImM(s) = (27)8(s — m3){aljir| ) (Alj2|8) + higher states

» Finally, a Borel Transformation g* — M? + duality takes care of possible
subtractions, convergence of the OPE and higher states:

Mope(M’, ...) = (aljs]\) (Alj2B)e”™"" 419




B — p form factors from B-meson LCDAS  «uodjamiri \el, Offen 2006

» Correlation function
Fulk 9) = i [ ¢3¢ (O[T (A0}, u(x), HO)imosb(O)}E(@ + )

» Unitarity relation

2mF, (k,q) = S (@m)5(k — m2) (01d7,ulpa(R)) (o (k) GimyysblB°(q + k)) +
A

Mofo €Nu (e(0)*-a) A57(a?)

= (qu 4 mPfPA(Ejp(qz) +
» Dispersion relation + LCOPE + Borel + duality
B i 2
2m, fp, A (a%) e Mo/M" = Fope(M?, g%)
og" 2y/m2 | o CT>B( )
Fope(M, %) = famgmy {/ do e=S(0)V/M 1 — 48 (amg) — iT + AAgV(qszéﬂsz)}
0 g g
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B — 7w form factors from B-meson LCDAs

» Correlation function

Fu(k,q) = f/dAX@m'X<0|T{a(X)W(X)7U(O)imwsb(o)}\éo(q +R))

» Unitarity relation

20mF,(k,q) = m / 072 (0| Gyt (k) (k) (k) (ko) TrysbIBO(q + R)) + - -
Fx (k?) Ft(k2,q2,c0s O

_ M * (1.2 (e=1) (1,2 ;2
= G ey )RR G) +

Corollary : Fx(s) F““"(s, %) is real for all s < 16m% =
Phase(F5Z7m.) = Phase(vector pion form factor)

Important for CP violation!!! ing, Kubis, Hanh:
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B — 7w form factors from B-meson LCDAs

» Dispersion relation + LCOPE + Borel + duality
i : SV Ba(S)F

- ds e=s/M* 2 VI Pl e ) FD (s, g2) = Fope(M2, g2

Am; e/ O (5:07) = Fore(M, 40

» p-dominance + zero-width limit:

fpgmﬂfmp/\/i (1)

N _ﬁr(s)ﬁ mpgﬂMAgp(qz)
m%—s+/ﬂrp(s) ) Ft (S7Q)—

Fr(s) = .
32 my —s—iv2r,(s)

V5 T(s)/m Fps0

2f, m ABP(g?) e~ "o/ M’
(M2 —s)2 +sT2(s) fompAs"(7) ’

2™
LHS = ZmePAg”(qz)/ ds e~/ {
4mZ

Fp—0

L §(s—m2) hep-ph/0611193 v/
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B — 7w form factors from B-meson LCDAs ch diamirian, JV, 1701.01633

» The same for other (axial-)vector form factors

it (Ra)n® (R2) [Ty (1= 5)bIB°(P)) = Fu (K, 0%, q - )\F\f i€vapy % R° R

2 2 T 2\/65 k-
(¥.q%q-B) =L (k ~ ra)

4—F}(

\f

+FY (K, 4%, q - k) % (R - 4(q- f?i(q 7)), 4k (;, R )

Similar sum rules and good narrow-width limit

8/19



B — 7w form factors from B-meson LCDAs

» Main input to the sum rule: Vector pion form factor F(s)

® Belle
10 b O  ALEPH ]
* CLEO
— G&S Fit
(Perr0) * Prtaso) * Prrro0)
1 K |
~N
—=
w
4 ﬂ{J
10 y E
L
-2
10 F E
-3
10 -

: 3
(M_0)? (GeVic?)?

» Other inputs : fz, Ag, M?, s". 9/19



B — 7w form factors from B-meson LCDAs

Probing resonance models for B — ww form factors

» Sum-rules contains weighted integral of form factors
= useful to constrain models

E.g. Three-resonance model :

: 2
e MR QR ABR q ol#r(5,0%)
A 07) = Z [m? —50— l\f) S Tr(s)]

p.p’p"

and similar for Fu, Fyj, Fo.
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B — nx form factors from B-meson

» One-resonance : Finite-width effects in B — p form factors

v (0) AT (0) A5(0) As”(0)
Inputs of KMO'06 0.31 0.23 0.19 0.26
Updated inputs 0.34 0.26 0.21 0.30
Gaussian scan 0.36+0.17 0.27+0.13 0.224+0.15 0.30+£0.06

BSZ'15 (p-DAs) 0.33+£0.03 0.26£0.03 0.23+0.04 0.36=+0.04

Full Frr, M? = 1GeV? 0.40£0.19 0.30+£0.14 0.24+£0.16 0.33£0.07
Final results for p-model 0.41£0.11 031£0.08 0.25+£0.10 0.3440.04

= Finite-width effects at the level of ~ 10%
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B — 7w form factors from B-meson LCDAs

» Other models with two or three resonances:

% — Model 1 ] sor - Model 1 ]
= Model 2 b = Model 2 ]
I I
= =
s (GeV?)
50 — Moddl 1 3% — Model 1
~- Model 2 = —- Model 2
40 F 1 S /\ q
= = f
= 3
®
w B
5 (GeV?) s (GeV?)

The suppression of F, outside the p hinders sensitivity to p’, p". 12/19



Generalized Distribution Amplitudes

» Definition: [k = R4+ Ry ;s = RS R = CRi ; Ry = (1= )kial

ax~ iu(R5x™ o=
O1(u¢.5) = [ G Bt ()a (k)] n-), )0
» Normalization (local correlator):

/du¢|\(u7<,S) = (2¢ — 1) Fx(s) (pion vector FF)
» Double Gegenbauer + Partial Wave Expansion:
n+1
O (U, ¢, K = Z Z B‘,lg k) C/*(u — T) B (k)P (cos 6)

where Bl (k) = F (k%)
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B — nxw form factors from 27-LCDAs

» Correlation function

M°(p?, k%, q%,q - k) = i / d*x e (t (Ry)m® (ka) T{T(x)imysb(x), B(0)imyysd(0)}[0)

» Unitarity relation
2ImM° = (27)8(p” — m3) (z ™t (Ri)x°(k2)|Gimyysb|B(p)) (B(p)|bimyvsd|0) + - - -
VPR R ,q-) mifs

= (2m)6(p* — ma) mafo /P F(q K, q - R) + - -+

» Dispersion relation + LCOPE + Borel + duality

szfB \/?Ft(Cﬂ I?27 q- E) eimé/Mz - H%PE(M27 q27 l?27 q : E)
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B — nxw form factors from 27-LCDAs

» In this case:

5. (M2 2 % m?) ! au __swym? 2 2 22y /=" R R
ore(M?, 0%, 1%, q - R) = v (Mb—q" +uR)®)~(u,q- R, k)
Uo
» SUM RULE :
m dU mE s(u
V@PR(G R Q) frrff (mh — q° + V'R & (u, ¢, k)
B

» Gegenbauer + Partial Wave Expansions :

6m?2 m2 —s(u)
b Pr(K) Z B!, (R) / %’aeisw (m} — % + u?R?) G/ * (u — T

(k) =
\/7 q \[meZ /2£+ (n o 1) uo

» Bl (k) = F.(K) - but for the sum rule we need higher moments.

» B!l (k?) for n > 0 not known
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ol T 1 [VPFL @ 4]
150}
100} \
sob y N 1

Vs ) o

I(Va/mp) F

T T

-—- Model 1 ]
== Model 2

» Both approaches give consistent results

» These results complement wam!

ymirian 2 \wal’FJ_,FH
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B — Kr form factors

» Extension to B — Kr -- Relevant for B — K*4¢

557 o \/?)\K ”
dse=s/M _NI“ A e o) F=D (s 02) = —famimy ABYee(q2, 027, M
/'mfr 4y/6m2 s/ w(S)F (s, 07) femams Agore(9°, 00 )

Recovers wr case when \¢ — s*[Bx(s)]*.

» More complicated for Fo :

27
5 ds 6’75/M L Fex(s )|:(2672_S)F(‘5W)(5.q2) + 53/2@,_—(1:1)

2
S,
4m2. 24/67255/2 )\ 2 I )\L/z 0 (s,q)

V3(m

Q S - BY 2 2m ae2
+T ZIM Fn (s,q )] = fams A ope(q°, 00", M7)

Mixes partial waves.
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Non-local effects in B — K*(— Krr

(g, k) =i / % @ (R(Rn) (o) T{TE (), CIO(0)} Bk + )

Can do the same generalization in non-local MEs as in form factors!
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» Describe B decays to unstable particles in terms of their underlying
multi-body decays

» LCSRs provide a means to perform this generalization
» E.g. we can estimate finite-width effects of O(10%) in B — p form factors

» Other applications underway. Good potential.
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