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Hadronic light-by-light scattering

• leading and next-to-leading hadronic effects in (g − 2)µ:

had

had

−→ hadronic vacuum polarisation: e+e− → hadrons
−→ hadronic light-by-light soon dominant uncertainty
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Hadronic light-by-light scattering

• leading and next-to-leading hadronic effects in (g − 2)µ:

had

had

−→ hadronic vacuum polarisation: e+e− → hadrons
−→ hadronic light-by-light soon dominant uncertainty

• different contributions estimated (in 10−11):

π0, η, η′

µ µ

π±, K± axials,

µ

scalars

µ

quarks

99±16 –19±13 15±7 21±3
−→ how to control hadronic modelling? Jegerlehner, Nyffeler 2009
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Pseudoscalar transition form factors and (g − 2)µ

• largest individual HLbL contribution:

pseudoscalar pole terms

singly / doubly virtual form factors

FPγγ∗(q2, 0) and FPγ∗γ∗(q21 , q
2
2)

π0, η, η′
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Pseudoscalar transition form factors and (g − 2)µ

• largest individual HLbL contribution:

pseudoscalar pole terms

singly / doubly virtual form factors

FPγγ∗(q2, 0) and FPγ∗γ∗(q21 , q
2
2)

π0, η, η′

• normalisation fixed by Wess–Zumino–Witten anomaly, e.g.:

Fπ0γγ(0, 0) =
e2

4π2Fπ

Fπ: pion decay constant −→ measured at 1.5% level PrimEx 2011
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Pseudoscalar transition form factors and (g − 2)µ

• largest individual HLbL contribution:

pseudoscalar pole terms

singly / doubly virtual form factors

FPγγ∗(q2, 0) and FPγ∗γ∗(q21 , q
2
2)

π0, η, η′

• normalisation fixed by Wess–Zumino–Witten anomaly, e.g.:

Fπ0γγ(0, 0) =
e2

4π2Fπ

Fπ: pion decay constant −→ measured at 1.5% level PrimEx 2011

• q2i -dependence: often modelled by vector-meson dominance

−→ what can we learn from analyticity and unitarity constraints?

−→ what experimental input sharpens these constraints?
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Dispersive analysis of π0/η → γ∗γ∗

• isospin decomposition:

Fπ0γ∗γ∗(q21 , q
2
2) = Fvs(q

2
1 , q

2
2) + Fvs(q

2
2 , q

2
1)

Fηγ∗γ∗(q21 , q
2
2) = Fvv(q

2
1 , q

2
2) + Fss(q

2
1 , q

2
2)
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• analyse the leading hadronic intermediate states:
Hanhart et al. 2013, Hoferichter et al. 2014

γ
(∗)
s/v

π0/η

γ∗v

π+

π−

⊲ isovector photon: 2 pions

∝ pion vector form factor × γπ → ππ / η → ππγ

all determined in terms of pion–pion P-wave phase shift
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⊲ isovector photon: 2 pions

∝ pion vector form factor × γπ → ππ / η → ππγ

all determined in terms of pion–pion P-wave phase shift
⊲ isoscalar photon: 3 pions
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Dispersive analysis of π0/η → γ∗γ∗

• isospin decomposition:

Fπ0γ∗γ∗(q21 , q
2
2) = Fvs(q
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1 , q
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2) + Fvs(q
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Fηγ∗γ∗(q21 , q
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2) = Fvv(q
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1 , q
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2) + Fss(q

2
1 , q

2
2)

• analyse the leading hadronic intermediate states:
Hanhart et al. 2013, Hoferichter et al. 2014

γ
(∗)
s/v

π0/η

γ∗v

π+

π−

γ
(∗)
v/s

π0/η

γ∗s
ω, φ

⊲ isovector photon: 2 pions

∝ pion vector form factor × γπ → ππ / η → ππγ

all determined in terms of pion–pion P-wave phase shift
⊲ isoscalar photon: 3 pions −→ dominated by narrow ω, φ

↔ ω/φ transition form factors; very small for the η
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Warm-up: charged pion form factor

=disc

1

2i
discFV

π (s) = ImFV
π (s) = FV

π (s)×θ(s−4M2
π)×sin δ11(s) e

−iδ11(s)

−→ final-state theorem: phase of FV
π (s) is just δ11(s) Watson 1954
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Warm-up: charged pion form factor

=disc

1

2i
discFV

π (s) = ImFV
π (s) = FV

π (s)×θ(s−4M2
π)×sin δ11(s) e

−iδ11(s)

−→ final-state theorem: phase of FV
π (s) is just δ11(s) Watson 1954

• solution:

FV
π (s) = P (s)Ω(s) , Ω(s) = exp

{

s

π

∫

∞

4M2
π

ds′
δ11(s

′)

s′(s′ − s)

}

P (s) polynomial, Ω(s) Omnès function Omnès 1958

⊲ ππ phase shifts from Roy equations
Ananthanarayan et al. 2001, García-Martín et al. 2011

⊲ P (0) = 1 from symmetries (gauge invariance)

• below 1 GeV: FV
π (s) ≈ (1 + 0.1GeV−2s)Ω(s)

slope due to inelastic resonances ρ′, ρ′′. . . Hanhart 2012
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Final-state universality: η, η′
→ π+π−γ

• η(′) → π+π−γ driven by the chiral anomaly, π+π− in P-wave

−→ final-state interactions the same as for vector form factor

• ansatz: Fη(′)

ππγ = A× P (t)× Ω(t), P (t) = 1 + α(′)t, t = M2
ππ
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Final-state universality: η, η′
→ π+π−γ

• η(′) → π+π−γ driven by the chiral anomaly, π+π− in P-wave

−→ final-state interactions the same as for vector form factor

• ansatz: Fη(′)

ππγ = A× P (t)× Ω(t), P (t) = 1 + α(′)t, t = M2
ππ

• divide data by pion form factor −→ P (t) Stollenwerk et al. 2012
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−→ exp.: αKLOE = (1.52± 0.06)GeV−2
cf. KLOE 2013
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η, η′
→ π+π−γ with left-hand cuts

• include a2: leading resonance in πη(′)

η(′)

π+π−

γ
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η(′)

π−π+

γ
a−2
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a2
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BK, Plenter 2015
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η, η′
→ π+π−γ with left-hand cuts

• include a2: leading resonance in πη(′)
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η → π+π−γ

KLOE 2013; BK, Plenter 2015

• induces curvature in P (t)
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η, η′
→ π+π−γ with left-hand cuts

• include a2: leading resonance in πη(′)
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• induces curvature in P (t)
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η, η′
→ π+π−γ with left-hand cuts

• include a2: leading resonance in πη(′)
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KLOE 2013; BK, Plenter 2015

• induces curvature in P (t)
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BESIII prel.; Hanhart et al. 2017

• curvature, plus ρ–ω mixing

B. Kubis, Dispersive analysis of light-meson transition form factors – p. 7



Transition form factor η → γ∗γ

Hanhart et al. 2013

F̄ηγ∗γ(q
2, 0) = 1 +

κηq
2

96π2F 2
π

∫

∞

4M2
π

dsσ(s)3PV (s)Pη(s)
|Ω(s)|2
s− q2

+∆F I=0
ηγ∗γ(q

2, 0) [−→ VMD]
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γ∗

B. Kubis, Dispersive analysis of light-meson transition form factors – p. 8



Transition form factor η → γ∗γ

Hanhart et al. 2013

F̄ηγ∗γ(q
2, 0) = 1 +

κηq
2

96π2F 2
π

∫

∞

4M2
π

dsσ(s)3PV (s)Pη(s)
|Ω(s)|2
s− q2

+∆F I=0
ηγ∗γ(q
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tage of using hadronic input
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(rate suppressed by α2
QED)

figure courtesy of C. Hanhart

data: NA60 2011, A2 2014
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Prediction for η′ transition form factor

• isovector: combine high-precision data

on η′ → π+π−γ and e+e− → π+π−

• isoscalar: VMD, couplings fixed from

η′ → ωγ and φ → η′γ
η′

γ

π+

π−

γ∗
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Prediction for η′ transition form factor

• isovector: combine high-precision data

on η′ → π+π−γ and e+e− → π+π−

• isoscalar: VMD, couplings fixed from

η′ → ωγ and φ → η′γ
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S. Holz, BSc thesis 2016
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Anomalous process γπ → ππ

• γπ → ππ: crossing symmetry, WZW low-energy theorem

F(s, t, u) = F(s) + F(t) + F(u) , F(0, 0, 0) = F3π =
e

4π2F 3
π
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Anomalous process γπ → ππ

• γπ → ππ: crossing symmetry, WZW low-energy theorem

F(s, t, u) = F(s) + F(t) + F(u) , F(0, 0, 0) = F3π =
e

4π2F 3
π

• left-hand cut F̂(s) and right-hand cut F(s) self-consistent:

F(s) = Ω(s)

{

C1

3
+

s

π

∫

∞

4M2
π

ds′

s′
sin δ11(s

′)F̂(s′)

|Ω(s′)|(s′ − s)

}

+ + + . . .=
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Anomalous process γπ → ππ

• γπ → ππ: crossing symmetry, WZW low-energy theorem

F(s, t, u) = F(s) + F(t) + F(u) , F(0, 0, 0) = F3π =
e

4π2F 3
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+ + + . . .=

• high-accuracy data from

Primakoff spectrum COMPASS

Seyfried, MSc thesis 2017

• fit dispersive representation
to data, extract F3π ≃ C1

Hoferichter, BK, Sakkas 2012

• lattice HadSpec coll. 2015
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Extension to decays: ω/φ → 3π

• same quantum numbers as γπ → ππ Niecknig, BK, Schneider 2012

• first ω → 3π Dalitz plot measurement WASA-at-COSY 2017

• test accuracy on φ → 3π Dalitz plot: 2 · 106 events KLOE 2005

750 800 850 900 950 1000 1050 1100 1150 1200 1250
bin number

0

2000

4000

6000

8000

F̂ = 0 once-subtracted twice-subtracted

χ2/ndof 1.71 . . . 2.06 1.17 . . . 1.50 1.02 . . . 1.03
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Transition form factor ω(φ) → π0ℓ+ℓ−

disc

ω

π
0

π
0

ω
π

+

π
−

=

• ω transition form factor related to

pion vector form factor × ω → 3π decay amplitude
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Transition form factor ω(φ) → π0ℓ+ℓ−

disc

ω

π
0

π
0

ω
π

+

π
−

=

• ω transition form factor related to

pion vector form factor × ω → 3π decay amplitude

• form factor normalization yields rate Γ(ω → π0γ)

(2nd most important ω decay channel)
−→ works at 95% accuracy Schneider, BK, Niecknig 2012
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Numerical results: ω → π0µ+µ−
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• clear enhancement vs. VMD

• incompatible with data from
heavy-ion collisions

NA60 2009, 2011

• ω → π0e+e− data: no tension
(but less precise) A2 2016

• NA60 data potentially in conflict with unitarity bounds
Ananthanarayan, Caprini, BK 2014, Caprini 2015
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Numerical results: φ → π0ℓ+ℓ−
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• measurement in ρ peak region

would be extremely helpful

• φ → 3π partial-wave amplitude
backed up by experiment

Niecknig, BK, Schneider 2012
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One step further: e+e− → 3π, e+e− → π0γ∗

π0

π−

π+

e−

e+

ω(φ)

• decay amplitude for ω/φ → 3π: Mω/φ ∝ F(s) + F(t) + F(u)

F(s) = aω/φΩ(s)

{

1 +
s

π

∫

∞

4M2
π

ds′

s′
sin δ11(s

′)F̂(s′)

|Ω(s′)|(s′ − s)

}

aω/φ adjusted to reproduce total width ω/φ → 3π
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One step further: e+e− → 3π, e+e− → π0γ∗

π0

π−

π+

e−

e+

• decay amplitude for e+e− → 3π: Me+e− ∝ F(s) + F(t) + F(u)

F(s, q2) = ae+e−(q
2) Ω(s)

{

1 +
s

π

∫

∞

4M2
π

ds′

s′
sin δ11(s

′)F̂(s′, q2)

|Ω(s′)|(s′ − s)

}

ae+e−(q
2) adjusted to reproduce spectrum e+e− → 3π

• parameterisation:

ae+e−(q
2) =

F3π

3
+ β q2 +

q4

π

∫

∞

thr

ds′
ImBW (s′)

s′2(s′ − q2)

BW (q2) =
∑

V=ω,φ

cV

M2
V − q2 − i

√

q2ΓV (q2)
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One step further: e+e− → 3π, e+e− → π0γ∗

π0e−

e+ γ∗

π+

π−

• decay amplitude for e+e− → 3π: Me+e− ∝ F(s) + F(t) + F(u)

F(s, q2) = ae+e−(q
2) Ω(s)

{

1 +
s

π

∫

∞

4M2
π

ds′

s′
sin δ11(s

′)F̂(s′, q2)

|Ω(s′)|(s′ − s)

}

ae+e−(q
2) adjusted to reproduce spectrum e+e− → 3π

• parameterisation:

ae+e−(q
2) =

F3π

3
+ β q2 +

q4

π

∫

∞

thr

ds′
ImBW (s′)

s′2(s′ − q2)

BW (q2) =
∑

V=ω,φ

cV

M2
V − q2 − i

√

q2ΓV (q2)

• fit to e+e− → 3π data −→ prediction for e+e− → π0γ∗
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Fit to e+e− → 3π data
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Hoferichter, BK, Leupold, Niecknig, Schneider 2014

• one subtraction/normalisation at q2 = 0 fixed by γ → 3π

• fitted: ω, φ residues, linear subtraction β
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Comparison to e+e− → π0γ data
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• "prediction"—no further parameters adjusted

• data very well reproduced
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Extension to spacelike region; slope

• continuation to spacelike region: use another dispersion relation

Fπ0γ∗γ(q
2, 0) = Fπγγ +

q2

π

∫

∞

4M2
π

ds′
ImFπ0γ∗γ(s

′, 0)

s′(s′ − q2)

• sum rule for slope Fπ0γ∗γ(q
2, 0) = Fπγγ

{

1 + aπ
q2

M2
π0

+O(q4)
}

aπ =
M2

π0

Fπγγ
× 1

π

∫

∞

4M2
π

ds′

s′2
ImFπ0γ∗γ(s

′, 0)

= (30.7± 0.6)× 10−3 Hoferichter et al. 2014

compare: aπ = (32± 4)× 10−3 PDG 2014

• theory error estimate:
⊲ ππ phases
⊲ cutoff effects in γ∗ → 3π partial waves and

[γ∗ → 3π] −→ [γ∗ → π0γ]
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Prediction spacelike form factor
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Hoferichter, BK, Leupold, Niecknig, Schneider 2014

−→ more precise low-energy spacelike data to come BESIII
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Summary / Outlook

Dispersive analyses of π0, η(′) transition form factors:

• high-precision data on

η → π+π−γ KLOE / η′ → π+π−γ BESIII / e+e− → π+π−π0 var.

allow for high-precision dispersive predictions of π0, η(′) → γ∗γ
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allow for high-precision dispersive predictions of π0, η(′) → γ∗γ

Further experimental input:

• Primakoff reactions γπ → ππ, γπ → πη COMPASS

• ω → 3π precision Dalitz plot CLAS, BESIII?

• ω/φ → π0γ∗ test doubly virtual Fπ0γ∗γ∗ with precision

• e+e− → ηπ+π− differential data Xiao et al., in progress
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Summary / Outlook

Dispersive analyses of π0, η(′) transition form factors:

• high-precision data on

η → π+π−γ KLOE / η′ → π+π−γ BESIII / e+e− → π+π−π0 var.

allow for high-precision dispersive predictions of π0, η(′) → γ∗γ

Further experimental input:

• Primakoff reactions γπ → ππ, γπ → πη COMPASS

• ω → 3π precision Dalitz plot CLAS, BESIII?

• ω/φ → π0γ∗ test doubly virtual Fπ0γ∗γ∗ with precision

• e+e− → ηπ+π− differential data Xiao et al., in progress

Theoretical work in progress:

• include high-energy constraints L. Bai, PhD thesis

• improved doubly-virtual η(′) (↔ η(′) → 4π) J. Plenter, MSc thesis

• link to lattice M. Niehus, MSc thesis
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Spares
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Summary: processes and unitarity relations for π0
→ γ∗γ∗

process unitarity relations SC 1 SC 2

γ
∗

v

γs

γ∗

v

P Fπ0γγ

γs

P F3π σ(γπ → ππ)

γ∗

s

γ∗

v

ω, φ γ∗

vω, φ Γπ0γ

ω, φ

P Γ3π
d2Γ
ds dt(ω, φ → 3π)

γ
∗

s

γ
∗

v

γ
∗

s
γ
∗

v

σ(e+e− → π0γ)

γ∗

s

P σ(e+e− → 3π)
σ(γπ → ππ)

d2Γ
ds dt(ω, φ → 3π)

γ
∗

s F3π σ(e+e− → 3π)

Colangelo, Hoferichter,

BK, Procura, Stoffer 2014

γπ → ππ

ω → 3π, φ → 3π

γ∗ → 3π

common theme:
resum ππ rescattering
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π0
→ γ∗(q2

v)γ
∗(q2

s) transition form factor

q
v
2

q
s
2

e−

e+
π0

e−

e+

e+

e−

π0

π0 → γγ

π0 → e+e−e+e−
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π0
→ γ∗(q2

v)γ
∗(q2

s) transition form factor
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π0 → γγ

π0 → e+e−e+e−

π0e−
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π− γ

∝ F π
V × T (γπ → ππ)
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π0
→ γ∗(q2

v)γ
∗(q2

s) transition form factor

q
v
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q
s
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Mω
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Mφ
2
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ω → π0e+e−

φ → π0e+e−
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π0 → e+e−e+e−

π0e−

e+

π+

π− γ

∝ F π
V × T (γπ → ππ)
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γ

e−

e+

ω(φ)
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Pion vector form factor vs. Omn ès representation

Data on pion form factor in τ−
→ π−π0ντ Belle 2008
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Schneider et al. 2012
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Pion vector form factor vs. Omn ès representation

Data on pion form factor in τ−
→ π−π0ντ Belle 2008

• divide τ− → π−π0ντ form factor by Omnès function:

0 0.5 1 1.5 2

Q
2
 [GeV

2
]

1.1

1.2

1.3
R

(Q
2 )

Hanhart et al. 2013

−→ linear below 1 GeV: FV
π (s) ≈ (1 + 0.1GeV−2s)Ω(s)

−→ above: inelastic resonances ρ′, ρ′′. . .
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Extension to vector-meson decays: ω/φ → 3π

• identical quantum numbers to γπ → ππ

• beyond ChPT: copious efforts to develop EFT for vector mesons
Bijnens et al.; Bruns, Meißner; Lutz, Leupold; Gegelia et al.; Kampf et al.. . .

• vector mesons highly important for (virtual) photon processes
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• identical quantum numbers to γπ → ππ

• beyond ChPT: copious efforts to develop EFT for vector mesons
Bijnens et al.; Bruns, Meißner; Lutz, Leupold; Gegelia et al.; Kampf et al.. . .

• vector mesons highly important for (virtual) photon processes

• ω/φ → 3π analyzed in terms of KLOE 2003, CMD-2 2006

sum of 3 Breit–Wigners (ρ+, ρ−, ρ0)

+ constant background term

+ crossed +
ω

ρ

π

π

π

ω

π

π

π
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Extension to vector-meson decays: ω/φ → 3π

• identical quantum numbers to γπ → ππ

• beyond ChPT: copious efforts to develop EFT for vector mesons
Bijnens et al.; Bruns, Meißner; Lutz, Leupold; Gegelia et al.; Kampf et al.. . .

• vector mesons highly important for (virtual) photon processes

• ω/φ → 3π analyzed in terms of KLOE 2003, CMD-2 2006

sum of 3 Breit–Wigners (ρ+, ρ−, ρ0)

+ constant background term

+ crossed +
ω

ρ

π

π

π

ω

π

π

π

Problem:

−→ unitarity fixes Im/Re parts

−→ adding a contact term destroys this relation

−→ reconcile data with dispersion relations?
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ω/φ → 3π: dispersive solution

• identical quantum numbers to γπ → ππ

F(s) = aΩ(s)

{

1 +
s

π

∫

∞

4M2
π

ds′

s′
sin δ11(s

′)F̂(s′)

|Ω(s′)|(s′ − s− iǫ)

}

F̂(s) =
3

2

∫ 1

−1

dz (1− z2)F
(

t(s, z)
)

−→ fix subtraction constant a to partial width(s) ω/φ → 3π
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ω/φ → 3π: dispersive solution

• identical quantum numbers to γπ → ππ

F(s) = aΩ(s)

{

1 +
s

π

∫

∞

4M2
π

ds′

s′
sin δ11(s

′)F̂(s′)

|Ω(s′)|(s′ − s− iǫ)

}

F̂(s) =
3

2

∫ t+(s)

t−(s)

dt
(

dz
dt

)(

1− z(t)2
)

F(t)

−→ fix subtraction constant a to partial width(s) ω/φ → 3π

• complication:
analytic continuation in
decay mass MV required

• MV < 3Mπ:
okay

Im(t)

Re(t)

t+(s)

t−(s)
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ω/φ → 3π: dispersive solution

• identical quantum numbers to γπ → ππ

F(s) = aΩ(s)

{

1 +
s

π

∫

∞

4M2
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ds′

s′
sin δ11(s

′)F̂(s′)

|Ω(s′)|(s′ − s− iǫ)

}

F̂(s) =
3

2

∫ t+(s)

t−(s)

dt
(

dz
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)(

1− z(t)2
)

F(t)

−→ fix subtraction constant a to partial width(s) ω/φ → 3π

• complication:
analytic continuation in
decay mass MV required

• MV > 3Mπ:
path deformation required

Im(t)

Re(t)

t+(s)

t−(s)
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ω/φ → 3π: dispersive solution

• identical quantum numbers to γπ → ππ

F(s) = aΩ(s)

{

1 +
s

π

∫

∞

4M2
π

ds′

s′
sin δ11(s

′)F̂(s′)

|Ω(s′)|(s′ − s− iǫ)

}

F̂(s) =
3

2

∫ t+(s)

t−(s)

dt
(

dz
dt

)(

1− z(t)2
)

F(t)

−→ fix subtraction constant a to partial width(s) ω/φ → 3π

• complication:
analytic continuation in
decay mass MV required

• MV > 3Mπ:
path deformation required
−→ generates 3-particle cuts
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ω/φ → 3π Dalitz plots

• subtraction constant a fixed to partial width
−→ normalised Dalitz plot a prediction

ω → 3π : φ → 3π :

• ω Dalitz plot is relatively smooth

• φ Dalitz plot clearly shows ρ resonance bands
Niecknig, BK, Schneider 2012
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• subtraction constant a fixed to partial width
−→ normalised Dalitz plot a prediction

ω → 3π : φ → 3π :

ω → 3π

• ω Dalitz plot is relatively smooth

• φ Dalitz plot clearly shows ρ resonance bands
Niecknig, BK, Schneider 2012
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Naive extension to e+e− → π0ω
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full dispersive

• full solution above naive VMD, but still too low

• higher intermediate states (4π / πω) more important?
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Anomalous decay η → π+π−γ

• αKLOE = (1.52± 0.06)GeV−2 large

−→ implausible to explain through ρ′, ρ′′. . .

• for large t, expect P (t) → const. rather

• η → γ∗γ transition form factor:
−→ dispersion integral covers

larger energy range η

γ

π+

π−

γ∗
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Anomalous decay η → π+π−γ

• αKLOE = (1.52± 0.06)GeV−2 large

−→ implausible to explain through ρ′, ρ′′. . .

• for large t, expect P (t) → const. rather

• η → γ∗γ transition form factor:
−→ dispersion integral covers

larger energy range η

γ

π+

π−

γ∗

Intriguing observation:

• naive continuation of Fη
ππγ = A(1 + αt)Ω(t) has zero

at t = −1/α ≈ −0.66GeV2

−→ test this in crossed process γπ− → π−η

−→ "left-hand cuts" in πη system? BK, Plenter 2015
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Primakoff reaction γπ → πη

• can be measured in Primakoff
reaction COMPASS

• S-wave forbidden
P-wave exotic: JPC = 1−+

D-wave a2(1320) first resonance

π−
η

π−
γ(∗)

Z
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Primakoff reaction γπ → πη

• can be measured in Primakoff
reaction COMPASS

• S-wave forbidden
P-wave exotic: JPC = 1−+

D-wave a2(1320) first resonance

π−
η

π−
γ(∗)

Z

• include a2 as left-hand cut in decay
couplings fixed from a2 → πη, πγ

η

π+π−

γ
a+2

η

π−π+

γ
a−2

η
π

π

a2
γ

π−

π+

P

⊲ compatible with decay data?
⊲ predictions for γπ → πη cross sections and asymmetries

[−→ spares] BK, Plenter 2015
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Formalism including left-hand cuts

η

π+π−

γ
a+2

η

π−π+

γ
a−2

η
π

π

a2
γ

π−

π+

P

• a2 + rescattering essential to preserve Watson’s theorem

• formally:

Fη
ππγ(s, t, u) = F(t) + Ga2(s, t, u) + Ga2(u, t, s)

F(t) = Ω(t)

{

A(1 + αt) +
t2

π

∫

∞

4M2
π

dx

x2

sin δ(x)Ĝ(x)
|Ω(x)|(x− t)

}

Ĝ: t-channel P-wave projection of a2 exchange graphs

• re-fit subtraction constants A, α
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Total cross section γπ → πη
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blue: t-channel dynamics / "ρ" only red: full amplitude

• t-channel dynamics dominate below
√
s ≈ 1GeV

• uncertainty bands: Γ(η → π+π−γ), α, a2 couplings BK, Plenter 2015
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Differential cross sections γπ → πη

• amplitude zero visible in differential cross sections:
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• strong P-D-wave interference

• can be expressed as forward-
backward asymmetry

AFB =
σ(cos θ > 0)− σ(cos θ < 0)

σtotal
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