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Introduction

The decay b → sγγ is a so-called rare decay.

The decay b → sγ is another example of such a decay. Let me make a few statements on

b → sγ which also hold for b → sγγ:

b → sγ does not exist at tree-level in the SM

However, it is induced at the one-loop level:

typical diagram (e.m. penguin)
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-tests SM at the QT level

-sensitive to certain CKM matrix elements

The loop-induction naturally suppresses the BR.



Structure of the decay amplitude:

A(b → sγ) =
∑

i=u,c,t

VibV
∗

is f [m
2
i /m

2
b ]

If the up-type masses were degenerate [mi = m], then

A(b → sγ) = f(m2/m2
b)

∑

i=u,c,t

VibV
∗

is = 0

due to unitarity of the CKM-matrix!

In reality, we have a strong splitting of the up-type masses: mt ≫ mc ≫ mu. As a

consequence, in part. because of the large mt, a BR of to order of 10−4 results!

b → sγ, b → sγγ etc. sensitive to the heaviest particles in the SM.

Therefore a high sensitivity to extensions of the SM is expected!

E.g. in the 2HDM of type II, the most stringent bound on the charged Higgs mass comes

from b → sγ.



Theoretical framework to calculate these decays

HQE: Γ[B → Xsγγ] = Γ[b → sγγ(g)] + corr. in ΛQCD/mb.

- no linear corrections in ΛQCD/mb

- Corr. start at O(Λ2
QCD/m2

b); they are related to the motion of the b-quark inside the

meson

Today, we only discuss the main contributions: the free b-quark decay b → Xsγγ.

Well-known: This partonic decay rate is significantly enhanced by QCD-effects.

There are large logs of the form (n gluons exchanged)

γ

W
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M = mt,mW : leading logs (LL)
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π
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logn−1 m2
b

M2
next-to-leading logs (NLL)

To get a reasonable result, one has to resum at least the LL and NLL terms.

Useful machinery to achieve resummation: construct effective Hamiltonian and resum

logs using RGE techniques.



Keeping only operators up to dim. 6, the effective Hamiltonian for b → sγγ is the same as

for b → sγ:

H = −4GF√
2

VtbV
∗

ts

8
∑

i=1

Ci(µ)Oi(µ) .

The operators relevant in the following are:

O1 = (c̄Lβγ
µbLα)(s̄LαγµcLβ) O2 = (c̄Lαγ

µbLα)(s̄LβγµcLβ)

O7 = e
16π2mb(µ) (s̄σµνRb)Fµν phot. dipole

O8 = gs
16π2mb(µ) (s̄ασµνT

A
αβRbβ)G

µν,A gluonic dipole

Note, there is a local bsγγ operator, but it is of dim. 8, i.e. suppressed by (mb/mW )2 and

therefore neglected.

t

γ
γ

b

W

s
b s

γ
γ

dim 8



Let’s look at the structure of the eff. Hamiltonian:

Heff ∼
∑

i

Ci(µ)Oi(µ)

Heff independent of µ, while Ci and Oi depend on µ:

→ RGE for Ci(µ):

µ
d

dµ
Ci(µ) = γT

ij Cj(µ) ; γij : anomalous dim. matrix

Matching usually done at high scale µW , i.e. µW ∼ O(mW ):

µW :
full theory and mat. el. of op. have same large log’s:

Corr. to Ci(µW ) rel. small.

RGE

µb = O(mb): mat. el. of op. don’t have large log’s: They are contained in the Ci(µb).



Calculation of the branching ratio consists of three steps:

LL NLL NNLL

-matching at µ = µW : → Ci(µW ) α0
s α1

s α2
s

-RGE: → Ci(µb) [with µb = O(mb)] α1
s α2

s α3
s

-calc. of matrix element for specific decay α0
s α1

s α2
s

The Wilson coeff. are all available even for NNLL precision.

For the matrix elements the situation is different:

For B → Xsγ the matrix elements are known at NNLL precision.

For B → Xsγγ they are known only at LL precision. We therefore started the NLL

program by working out the QCD corrections the dominant O7 contribution on which I

report now.



B → Xsγγ: Situation without QCD

We take into account the effects of the dominant operators O1, O2 and O7.

The matrix elements associated with O7:
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The matrix elements associated with O1,2:
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s
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s

= 0

First look at the kinematics of the process b → sγγ.

The corresponding fully differential decay width has two independent kinematical



variables. We choose them to be s1 and s2:

s1 = (pb − q1)
2/m2

b s2 = (pb − q2)
2/m2

b ; (q1, q2 photons; pb b-quark)

In the b-rest frame they are related to the photon energies (E1 and E2):

s1 = 1− 2E1/mb

s2 = 1− 2E2/mb

E1 and E2 must be away from zero to be observed ↔ s1 < 1 and s2 < 1.

Require additionally that s1 > 0 and s2 > 0: By this condition we exclude collinear

photon emission from the s-quark, because

(ps + q1)
2 = (pb − q2)

2 = s2 m
2
b and (ps + q2)

2 = (pb − q1)
2 = s1 m

2
b .

The invariant mass squared s of the two photons also has to be away from 0

s = (q1 + q2)
2/m2

b = 1− s1 − s2 it is zero on the diagonal line



We work out the double double diff. decay width in the window below, parametrized by c

(as suggested by Reina, Ricciardi, Soni 1997):
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s1 ≥ c ; s2 ≥ c ;

1− s1 − s2 ≥ c .

Our aim is to give the double differential decay width is this restricted area.

Note: When later taking into account bremsstrahlung gluons, the kinematical

(s1, s2)-range becomes larger. But, nevertheless we restrict ourselves to the shaded area

also in this case.



We illustrate the result for the double differential decay width by fixing s2 at 0.2 and vary

s1 (kinematical endpoint at s1 = 0.8).

dashed-line: (O7, O7)-contr. only.

Solid: all contributions

The contributions from O1 and O2 involve the combination C2(µ) +
4
3C1(µ). For

µ = mb/2 this combination is (accidentally) almost vanishing. This does not hold at other

scales.



For the (O7, O7)-interference we get [r0 is a (symmetric) polynomial in s1 and s2]:

dΓ
(0)
77

ds1ds2
=

G2
Fm

5
bα|C7(µ)|2|VtbVts|2Q2

d

1024π5

1− s1 − s2
(1− s1)2s1(1− s2)2s2

r0 .

The remaining interferences (O1,2, O7), (O1,2, O1,2) etc. lead to (Reina et al. 1997; Hiller

et al. 1997; Cao et al. 2001; Asatrian 2011):
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=
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∣
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∣

∣
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+16QdQ
2
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C2(µ) +
4

3
C1(µ)

)

C7(µ)
(

1− s1 − s2 − 4 m̂2
c Re

(

arcsin2(z)
))

}

,

with z =
√

(1− s1 − s2)/(4m̂2
c). m̂

2
c is understood to have a small negative imaginary

part.



Some numbers to get a rough idea for the branching ratio:

Using c = 1/100 for the kinematical cut-parameter, we get at LL precision:

For µ = mb/2: 4.0× 10−7;

For µ = mb: 3.1× 10−7;

For µ = 2mb: 2.5× 10−7;

Or, when using c = 1/50 for the kinematical cut-parameter:

For µ = mb/2: 2.4× 10−7;

For µ = mb: 1.9× 10−7;

For µ = 2mb: 1.6× 10−7;

→ The LL results strongly dependent on the renormalization scale µ. Complete NLL

corrections should reduce it!



B → Xsγγ: Virtual gluon corrections to the O7 contribution

The diagrams defining the (unrenormalized) virtual corrections are:
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not shown: diags. with self-energy

insertions on the external fermion

legs: Taken into account through

renormalization.

Technically, we directly calculated the interference with the lowest order diagrams, e.g

b bs
O

7
O

7

q
1

q
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s

q
1

q
2

3P

These objects contain loop- and

phase space integrals!

We converted the phase-space integrals to loop-integrals, used systematically the IBP



relations (with the AIR and FIRE implementations) and back-converted the obtained MI’s

to mixed loop/phase-space integrals. Then diff. eqs.

Taking into account all counterterms, the structure of the renormalized result is
(r = m2

s/m
2
b):

dΓ
(1),virt
77

ds1ds2

=
αs

4π
CF

[

4 log(s1 + s2) − 4 − 2 log(r)

ǫ
+ log

2
(r) − log(r)

](

µ

mb

)2ǫ dΓ
(0,d)
77

ds1ds2

+ “fin. terms” .

A few remarks:

1. The infrared singularites associated with soft gluons were regulated dimensionally.

Note: The photons do not become soft, we want to observe them.

2. Collinear singularites: were regulated with a non-zero strange quark mass ms. All

these singularities are due to collinear gluons in our restricted phase space (when

considering virtual corrections).



B → Xsγγ : Gluon bremsstrahlung corrections to the O7 contribution

The diagrams at the amplitude level are:
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1 0 1 1 1 2

x : gluon emission

The kinematical range of s1 and s2 is larger in this case (0 < s1 < 1, 0 < s2 < 1), but we

restrict to the region discussed above, which is also accessible to the lowest order.

The four-particle final state is described by 5 independent kin. variables, s1 and s2 are just

two of them.

We integrated over the three remaining variables, i.e. we only keep s1 and s2 differential,

leading to

dΓ
(1),brems
77

ds1ds2
.



We found: When combining virtual- and bremsstrahlung corrections, there is

no cancellation of the log(ms) terms (the 1/ǫ and log2(ms) terms however, do cancel).

First guess: Somewhere is simply an error, but this was not the case.

Solution to the problem:

In the bremsstrahlung process there are config-

urations where one of the photons can become

collinear with the s-quark even within our re-

stricted phase space region, leading to uncancelled

log(ms) terms.

s

γ

γ

g

When combining virtual- and bremsstrahlung corrections in this setup, we have to

following situation:

1. The sing. induced by soft/coll. gluons cancel

2. The sing. induced by coll. photons do no cancel



The point is that our observable is inclusive concerning gluons, but not w.r.t. photons. [The

combination b → sγ (including QED corrections) plus b → sγγ would be inclusive].

In principle, the configuration with coll. photon emission could be treated using

fragmentation functions.

We recently considered the fragmentation function stuff in connection with specific

contributions the process B → Xsγ. There we saw, that simply treating ms as a consituent

mass gives similar results.

For B → Xsγγ we proceed in the latter way and use ms = 400, 500, 600 MeV in the

numerics.



Virtual- and bremsstrahlung combined

The final result for the O(αs) corrections reads

dΓ
(1)
77

ds1 ds2
=

α2 m̄2
b(µ)m

3
b |C7,eff (µ)|2G2

F |VtbV
∗

ts|2 Q2
d

1024π5
×

αs

4π
CF

[ −4 r0 (1− s1 − s2)

(1− s1)2 s1 (1− s2)2 s2
log

µ

mb

+ f + g log((ms/mb)
2) + h

]

.

The functions f and g in [] were given in analytic form, while for h we made a fit to a set

of simple “basis-functions”, which is very accurate.

→ Main result of arXiv:1403.4502



B → Xsγγ: NLL Numerical results, O7 contr. (arXiv:1403.4502)

Again: s2 fixed at 0.2.

dotted: LL result;

dashed: forget it;

solid: NLL for ms = 400, 500, 600 MeV.

When gluon bremsstrahlung is absent, the kin. endpoint in s1 is at 0.8. → LL curve goes

to zero at s1 = 0.8.

At NLL we also have gluon bremsstrahlung, smax
1 = 1 → NLL is not zero at s1 = 0.8.

Comparing LL and NLL: QCD corrections are important: they modify shape of spectra,

not only normalization.



Non-logarithmic ms effects in the (O7, O7) contribution to B → Xsγγ

In the results just discussed, only the logarithmic and constant terms in ms were kept,

while the power terms m1
s,m

2
s, ... were discarded. As we finally work with rather large

ms, we recently did a computation where the full ms-dependence is kept (Asatrian, Greub,

Kokulu, arXiv:1611.08449)

Plot: [solid ↔ full; dashed ↔ power terms in ms discarded]

s1 = 0.2 & Μ=mb

ms = 500 MeV

ms = 400 MeV

ms = 600 MeV
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Comment on the (O8, O8) contribution to B → Xsγγ

In addition, we have also worked out the (O8, O8) contribution. It is very small in the full

phase space (Asatrian, Greub, Kokulu, 1511.00153 [hep-ph]) .

The (O8, O8) is naively suppressed by a factor of |C8Qd/C7|2 ∼ 1/36 relative to the

QCD corrections to the (O7, O7) interference contribution.

Potentially this naive suppression could be mildered:

In the O7 contribution only one photon can be emitted from the strange quark, while in the

O8 contribution both photons can be emitted from the strange, leading potentially to a

certain enhancement of the O8 due to propagator effects.

A detailed analysis shows, however, that the (O8, O8) contribution influences the

branching ratio by about +0.1% (Asatrian, Greub, Kokulu, 1511.00153 [hep-ph])



Missing NLL contributions; alternative observables

QCD corrections to (O1,2, O7) and (O1,2, O1,2) are important, but difficult to calculate.

Nevertheless, we started ( → future talk!).

Reduction of scale dependence (µ) only will happen if these contributions are included.

We also plan to work out observables where the photons are isolated (isolation cuts à la

Frixione, hep-ph/9801442).



B → Xsγγ: Kinematical branching ratios

We use c = 1/100 (upper part of table) and c = 1/50 (lower part). All numbers in units of

10−7.

O7-columns: only contributions from O7;

“all”-columns: O7 + O1,2 contrib. at lowest order

O7 all O7 all O7 all

µ = mb/2 µ = mb/2 µ = mb µ = mb µ = 2mb µ = 2mb

LL 3.96 3.96 3.10 3.11 2.45 2.53

NLL1 3.81 3.81 2.37 2.39 1.60 1.68

NLL2 3.35 3.34 2.08 2.10 1.41 1.49

NLL3 2.97 2.97 1.85 1.87 1.25 1.33

LL 2.40 2.40 1.87 1.89 1.48 1.55

NLL1 2.39 2.39 1.49 1.51 1.01 1.08

NLL2 2.17 2.17 1.35 1.37 0.91 0.99

NLL3 1.99 1.99 1.24 1.26 0.84 0.91

NLL1 ↔ms = 400 MeV ; NLL2 ↔ ms = 500 MeV ; NLL3 ↔ms = 600 MeV .



Summary

The branching ratio for B → Xsγγ is systematically known only at LL precision.

We did a first step towards NLL precision by calculating QCD corrections to the matrix

element associated with O7.

The corrections are large. They modify the spectra, not only the normalization.

Note: Calculations of the matrix elements in the process B → Xsγγ at NLL precison are

of similar complexity as those for B → Xsγ at NNLL. .... and this was a long enterprise!

So it will take some time to work out the important QCD corrections involving the

operators O1 and O2. The Armenian-Swiss collaboration will go on!


