

FLAVOUR PHYSICS and HEAVY QUARKS

Thomas Mannel

Theoretical Physics I, Siegen University

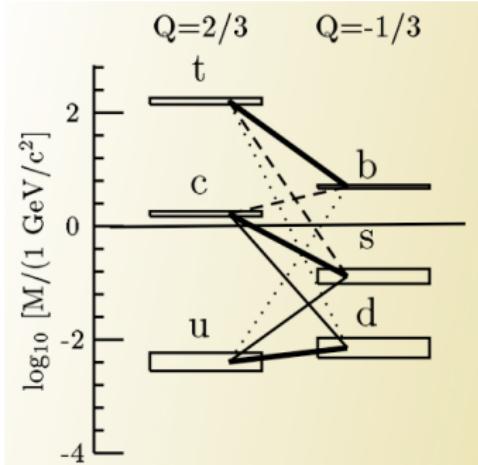
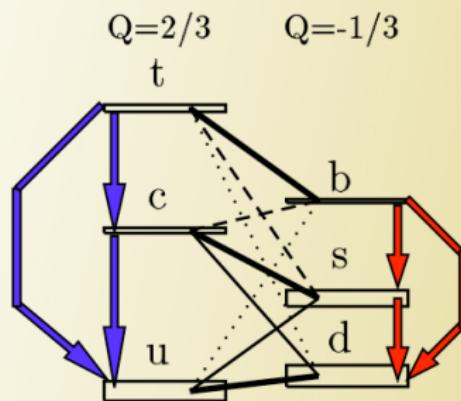
**School on “Physics in the Standard
Model and Beyond”**

Tblisi, 28.09. - 30.09.2017

Preliminary Remarks

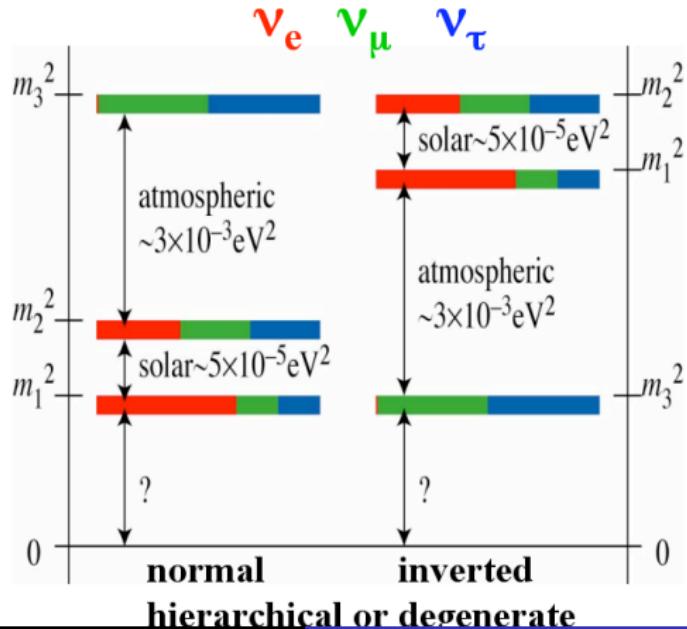
- Flavour Physics:

Transitions between different kinds of Quarks



- Its all about weak interactions ...
- Strong interactions as a “background”

- Likewise for Leptons, but
- no strong interactions here
- Neutrinos hard to detect
→ Flavour Identification



More reading ...

- R. Fleischer: **Flavour Physics and CP Violation**
Lectures given at European School of High-Energy Physics 2005
[hep-ph/0608010](https://arxiv.org/abs/hep-ph/0608010) → Non-leptonics and CP
- A. Buras: **Flavor physics and CP violation**
Lectures given at European School of High-Energy Physics 2004
[hep-ph/0505175](https://arxiv.org/abs/hep-ph/0505175) → rare FCNC decays
- A. Buras: **Minimal flavor violation**
Lectures given at 43rd Cracow School of Theoretical Physics 2003
[hep-ph/0310208](https://arxiv.org/abs/hep-ph/0310208) → MFV and New Physics

- Y. Nir: **Probing new physics with flavor physics**
Lectures given at 2nd Joint Fermilab-CERN Hadron
Collider Physics Summer School 2007
arXiv:0708.1872 [hep-ph] → **Mainly New Physics**
- A. Bevan, B. Golob, T. Mannel, S. Prell, B. Yabsley
(eds.) **The Physics of the B Factories**
Eur.Phys.J. **C74** (2014) 3026, (926 pages)

Outline of the course

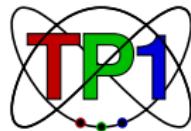
- Lecture 1: Flavour in the Standard Model
- Lecture 2: Theoretical Tools and Phenomenology
- Lecture 3: Flavour beyond the Standard Model

Lecture 1

Flavour in the Standard Model

Thomas Mannel

Theoretische Physik I Universität Siegen



School on “Physics in the Standard Model and Beyond”

Tbilisi, 28.09. - 30.09.2017

Outline of Lecture 1

1 Quarks in the SM: $SU(2)_L \times U(1)_Y$

- Symmetries and Quantum Numbers
- Quark Mixing and CKM Matrix

2 Leptons In the Standard Model

- Assignment of Quantum Numbers
- See Saw Mechanism
- PMNS Matrix

3 Peculiarities of Flavour in the Standard Model

- Peculiarities of SM CP / Flavour

Gauge Structure of the Standard Model

I assume a few things to be known:

- The Standard Model is a gauge theory based on
 $SU(3)_{QCD} \otimes SU(2)_{Weak} \otimes U(1)_{Hypercharge}$
- Eight gluons, three weak gauge bosons, one photon
- Matter (quarks and leptons):
 Multiplets of the gauge group \rightarrow Quantum numbers
- Spontaneous Symmetry Breaking:
 Introduction of scalar fields
- Massless Goldstone Modes:
 Higgs Mechanism:
 $\phi \rightarrow$ longitudinal modes of gauge bosons: $\phi \sim \partial_\mu W^\mu$

Matter Fields: Quarks

- Left Handed Quarks:
 $SU(3)_C$ Triplets, $SU(2)_L$ Doublets

$$Q_1 = \begin{pmatrix} u_L \\ d_L \end{pmatrix} \quad Q_2 = \begin{pmatrix} c_L \\ s_L \end{pmatrix} \quad Q_3 = \begin{pmatrix} t_L \\ b_L \end{pmatrix}$$

$SU(2)_L$ will be gauged

- Right Handed Quarks:
 $SU(3)_C$ Triplets, $SU(2)_R$ Doublets

$$q_1 = \begin{pmatrix} u_R \\ d_R \end{pmatrix} \quad q_2 = \begin{pmatrix} c_R \\ s_R \end{pmatrix} \quad q_3 = \begin{pmatrix} t_R \\ b_R \end{pmatrix}$$

$SU(2)_R$ introduced “artificially”

Quantum Numbers

- Hypercharge

$$Y = T_{3,R} + \frac{1}{2}(B - L)$$

- Charge

$$q = T_{3,L} + Y = T_{3,L} + T_{3,R} + \frac{1}{2}(B - L)$$

Higgs Fields: Standard Model

- Single $SU(2)$ Doublett: Two Complex Fields

$$\Phi = \begin{pmatrix} \phi_+ \\ \phi_0 \end{pmatrix}$$

- Charge Conjugate Field is also an $SU(2)$ Doublett

$$\tilde{\Phi} = (i\tau_2)\Phi^* = \begin{pmatrix} \phi_0^* \\ -\phi_- = -\phi_+^* \end{pmatrix}$$

- It is useful to gather these into a 2×2 matrix

$$H = \begin{pmatrix} \phi_0^* & \phi_+ \\ -\phi_- & \phi_0 \end{pmatrix}$$

- Transformation Properties: $L \in SU(2)_L$:

$$\Phi \rightarrow L\Phi \quad \tilde{\Phi} \rightarrow L\tilde{\Phi}$$

- Transformation Properties: $R \in SU(2)_R$:

$$\begin{pmatrix} \phi_0 \\ \phi_- \end{pmatrix} \rightarrow R \begin{pmatrix} \phi_0 \\ \phi_- \end{pmatrix} \quad \begin{pmatrix} \phi_+ \\ -\phi_0^* \end{pmatrix} \rightarrow R \begin{pmatrix} \phi_+ \\ -\phi_0^* \end{pmatrix}$$

- In total:

$$H \rightarrow LHR^\dagger \quad (\text{remember } Q \rightarrow LQ \quad q \rightarrow Rq)$$

- Hypercharges

$$Y\Phi = -\Phi \quad Y\tilde{\Phi} = \tilde{\Phi} \quad YH = -HT_{3,R}$$

Gauge Interactions

- $SU(3)_{color}$ is gauged (not relevant for us now)
- $SU(2)_L$ is gauged **Three W_a^μ Bosons**
- Hypercharge is gauged **One B^μ Boson**
- Recipe: Replace the ordinary derivative in the kinetic terms by the covariant one

$$\partial^\mu \rightarrow D^\mu = \partial^\mu - igT_{L,a}W_a^\mu - iYB^\mu$$

+QCD interactions

- Weinberg rotation between W_3^μ and B^μ ...
- I assume you have heard the rest of the story ...
- **This is not relevant for the phenomenon of masses and mixing !**

Structure of the Standard Model

- Start out from an $SU(2)_L \times SU(2)_R$ symmetric case:
- Kinetic Term for Quarks and Higgs (i : Generation)

$$\mathcal{L}_{kin} = \sum_i [\bar{Q}_i \not{\partial} Q_i + \bar{q}_i \not{\partial} q_i] + \frac{1}{2} \text{Tr} [(\partial_\mu H)^\dagger (\partial^\mu H)]$$

- Potential for the Higgs field

$$V = V(H) = V(\text{Tr} [H^\dagger H])$$

- Interaction between Quarks and Higgs

$$\mathcal{L}_I = - \sum_{ij} y_{ij} \bar{Q}_i H q_j + \text{h.c.}$$

- y_{ij} can be made diagonal: Any Matrix y can be diagonalized by a Bi-Unitary Transformation:

$$y = U^\dagger y_{diag} W$$

- Thus

$$\mathcal{L}_I = - \sum_{ijk} \bar{Q}_i (U^\dagger)_{ik} y_k W_{kj} H q_j + \text{h.c.}$$

- Rotation of Q_i and q_j :

$$Q' = UQ \quad q' = Wq$$

- This has no effect on the kinetic term:

$y_{ij} = y_i \delta_{ij}$ is the general case!

$$\mathcal{L}_I = - \sum_i y_i \bar{Q}_i H q_i + \text{h.c.}$$

Sponaneous Symmetry Breaking

- The Higgs Potential is (Renormalizable):

$$V = \kappa (\text{Tr} [H^\dagger H]) + \lambda (\text{Tr} [H^\dagger H])^2$$

- For $\kappa < 0$ we have SSB:

H acquires a Vacuum Expectation Value (VEV)

$$\text{Tr} [\langle H^\dagger \rangle \langle H \rangle] = -\frac{\kappa}{2\lambda} > 0$$

- Choice of the VEV

$$\langle \text{Re} \phi_0 \rangle = v \text{ or } \langle H \rangle = v \mathbf{1}_{2 \times 2}$$

- Three massless fields: $\phi_+, \phi_-, \text{Im}\phi_0$:
Goldstone Bosons
- $\phi_0 \rightarrow v + \phi'_0$: One massive field
- Higgs Mechanism: **The massless scalars become the longitudinal modes of the massive vector bosons:**
 - * $\phi_{\pm} \sim \partial^{\mu} W_{\mu}^{\pm}$
 - * $\text{Im}\phi_0 \sim \partial^{\mu} Z_{\mu}$
- ϕ'_0 : Physical Higgs Boson

- The Quarks become massive:

$$\mathcal{L}_I = - \sum_i y_i v \bar{Q}_i q_i + \text{h.c.} + \dots$$

- We have $\bar{Q}_1 q_1 = \bar{u}_L u_R + \bar{d}_L d_R$ etc.
- Thus

$$\mathcal{L}_{mass} = -m_u(\bar{u}u + \bar{d}d) - m_c(\bar{c}c + \bar{s}s) - m_t(\bar{t}t + \bar{b}b)$$

- This is not (yet) what we want ...
- We still have too much symmetry!

Custodial $SU(2)$

- Symmetry of the Higgs Sector in the Standard Model:

$$SU(2)_L \otimes SU(2)_R \xrightarrow{SSB} SU(2)_{L+R} = SU(2)_C$$

- Note that we cannot have explicit breaking of $SU(2)_R$ in the Higgs sector:

$$\text{Tr} [H \tau_i H^\dagger] = 0$$

- $SU(2)_C$: Custodial Symmetry!
→ Extra Symmetry in the Higgs sector !
- This is more than needed: Only $U(1)_Y$ is needed
- $U(1)_Y$ will be related to the τ_3 direction of $SU(2)_R$

- Consequences of $SU(2)_C$:

- Relation between charged and neutral currents:
 ρ parameter
- Masses of W^\pm and of Z^0 are equal
- Up- and Down-type quark masses are equal in each family
- No mixing occurs among the families

- $SU(2)_C$ is broken by:

- Yukawa Couplings
- Gauging only the Hypercharge

$$Y = T_3^{(R)} + \frac{1}{2}(B - L)$$

Breaking $SU(2)_C$: Yukawa Couplings

- Explicit breaking of $SU(2)_C$ by Yukawa Couplings:

$$\mathcal{L}'_I = - \sum_{ij} y'_{ij} \bar{Q}_i H (2 T_{3,R}) q_j + \text{h.c.}$$

- Effect of this term:
 - Introduces a splitting between up- and down quark masses
 - Introduces mixing between different families
 - Affects the ρ parameter
- Total Yukawa Coupling term:

$$\mathcal{L}_I + \mathcal{L}'_I = - \sum_{ij} \bar{Q}_i H (y_i \delta_{ij} + 2 T_{3,R} y'_{ij}) q_j + \text{h.c.}$$

Quark Mass Matrices

- Use the projections

$$P_{\pm} = \frac{1}{2} \pm T_{3,R} \quad \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \text{ or } \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

- Up quark Yukawa couplings:

$$\mathcal{L}_{mass}^u = - \sum_{ij} \bar{Q}_i H (y_i \delta_{ij} + y'_{ij}) P_+ q_j + \text{h.c.}$$

- Down quark Yukawa couplings:

$$\mathcal{L}_{mass}^d = - \sum_{ij} \bar{Q}_i H (y_i \delta_{ij} - y'_{ij}) P_- q_j + \text{h.c.}$$

- \rightarrow mass terms, once $\text{Re } \phi_0 \rightarrow v$

- More compact notation

$$\mathcal{U}_{L/R} = \begin{bmatrix} u_{L/R} \\ c_{L/R} \\ t_{L/R} \end{bmatrix} \quad \mathcal{D}_{L/R} = \begin{bmatrix} d_{L/R} \\ s_{L/R} \\ b_{L/R} \end{bmatrix}$$

- Mass Term for Up-type quarks

$$\mathcal{L}_{mass}^u = -v \bar{\mathcal{U}}_L Y^u \mathcal{U}_R + \text{h.c.}$$

with $Y^u = (y + y')$

- Mass Term for down-type quarks

$$\mathcal{L}_{mass}^d = -v \bar{\mathcal{D}}_L Y^d \mathcal{D}_R + \text{h.c.}$$

with $Y^d = (y - y')$

- Mass matrices:

$$\mathcal{M}^u = v \, Y^u \quad \mathcal{M}^d = v \, Y^d$$

- In general non-diagonal: Diagonalization by a bi-unitary transformation:

$$\mathcal{M} = U^\dagger \mathcal{M}_{\text{diag}} W$$

- New basis for the quark fields

$$\mathcal{L}_{\text{mass}}^u = -\bar{U}_L U^{u,\dagger} \mathcal{M}_{\text{diag}}^u W^u \mathcal{U}_R + \text{h.c.}$$

and

$$\mathcal{L}_{\text{mass}}^d = -\bar{D}_L D^{d,\dagger} \mathcal{M}_{\text{diag}}^d W^d \mathcal{D}_R + \text{h.c.}$$

Quark Mixing: The CKM Matrix

- Effect of the basis transformation:
 - Mass matrices become diagonal
 - Interaction with $\text{Re } \phi_0$ (= Physical Higgs Boson) becomes diagonal !
 - Interaction with $\text{Im } \phi_0$ ($= Z_0$) becomes diagonal !

$$\mathcal{L}_{\text{Re } \phi_0} = -\text{Re } \phi_0 [\mathcal{U}_L Y^u \mathcal{U}_R + \mathcal{D}_L Y^d \mathcal{D}_R]$$

$$\mathcal{L}_{\text{Im } \phi_0} = -\text{Im } \phi_0 [\mathcal{U}_L Y^u \mathcal{U}_R - \mathcal{D}_L Y^d \mathcal{D}_R]$$

- NO FLAVOUR CHANGING NEUTRAL CURRENTS**
(at tree level in the Standard Model)
- GIM Mechanism

- Effect on the charged current ONLY:
Interaction with ϕ_- :

$$\begin{aligned}
 & \sum_{ij} \bar{Q}_i (y_i \delta_{ij} + y'_{ij}) \phi_- \tau_- P_+ q_j + \text{h.c.} \\
 &= \mathcal{D}_L Y^u \mathcal{U}_R \phi_- + \text{h.c.} \\
 &= \bar{\mathcal{D}}_L \mathcal{U}^{d,\dagger} (U^d U^{u,\dagger}) Y_{\text{diag}}^u \mathcal{W}^u \mathcal{U}_R \phi_- + \text{h.c.}
 \end{aligned}$$

- In the charged currents flavour mixing occurs!
- Parametrized through the Cabbibo-Kobayashi-Maskawa Matrix:

$$V_{CKM} = U^d U^{u,\dagger}$$

Properties of the CKM Matrix

- V_{CKM} is unitary (by our construction)
- Number of parameters for n families
 - Unitary $n \times n$ matrix: n^2 real parameters
 - Freedom to rephase the $2n$ quark fields: $2n - 1$ relative phases
- $n^2 - 2n + 1 = (n - 1)^2$ real parameters
 - * $(n - 1)(n - 2)/2$ are phases
 - * $n(n - 1)/2$ are angles
- Phases are sources of CP violation
- $n = 2$: One angle, no phase \rightarrow no CP violation
- $n = 3$: Three angles, one phase
- $n = 4$: Six angles, three phases

CKM Basics

- Three Euler angles θ_{ij}

$$U_{12} = \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad U_{13} = \begin{bmatrix} c_{13} & 0 & s_{13} \\ 0 & 1 & 0 \\ -s_{13} & 0 & c_{13} \end{bmatrix}, \quad U_{23} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix}$$

- Single phase δ : $U_\delta = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{-i\delta_{13}} \end{bmatrix}$.

- PDG CKM Parametrization:

$$V_{\text{CKM}} = U_{23} U_{\delta}^{\dagger} U_{13} U_{\delta} U_{12}$$

- Large Phases in $V_{ub} = |V_{ub}| e^{-i\gamma} = s_{13} e^{-i\delta_{13}}$ and $V_{td} = |V_{td}| e^{i\beta}$

CKM Unitarity Relations

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

- Off diagonal zeros of $V_{CKM}^\dagger V_{CKM} = 1 = V_{CKM} V_{CKM}^\dagger$
- $V_{CKM}^\dagger V_{CKM} = 1 : \begin{cases} V_{ub} V_{ud}^* + V_{cb} V_{cd}^* + V_{tb} V_{td}^* = 0 \\ V_{ub} V_{us}^* + V_{cb} V_{cs}^* + V_{tb} V_{ts}^* = 0 \\ V_{us} V_{ud}^* + V_{cs} V_{cd}^* + V_{ts} V_{td}^* = 0 \end{cases}$
- $V_{CKM} V_{CKM}^\dagger = 1 : \begin{cases} V_{ud} V_{td}^* + V_{us} V_{ts}^* + V_{ub} V_{tb}^* = 0 \\ V_{ud} V_{cd}^* + V_{us} V_{cs}^* + V_{ub} V_{cb}^* = 0 \\ V_{cd} V_{td}^* + V_{cs} V_{ts}^* + V_{cb} V_{tb}^* = 0 \end{cases}$

Wolfenstein Parametrization of CKM

- Diagonal CKM matrix elements are almost unity
- CKM matrix elements decrease as we move off the diagonal
- Wolfenstein Parametrization:

$$V_{CKM} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & \lambda^3 A(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & \lambda^2 A \\ \lambda^3 A(1 - \rho - i\eta) & -\lambda^2 A & 1 \end{pmatrix}$$

- Expansion in $\lambda \approx 0.22$ up to λ^3
- A, ρ, η of order unity

Unitarity Triangle(s)

- The unitarity relations:
Sum of three complex numbers = 0
- Triangles in the complex plane
- Only two out of the six unitarity relations involve terms of the same order in λ :

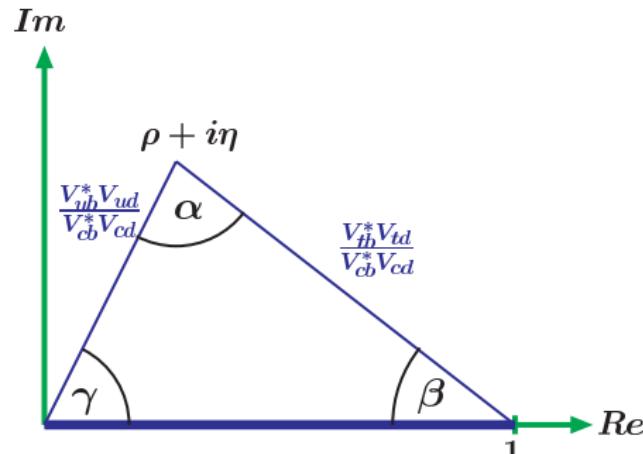
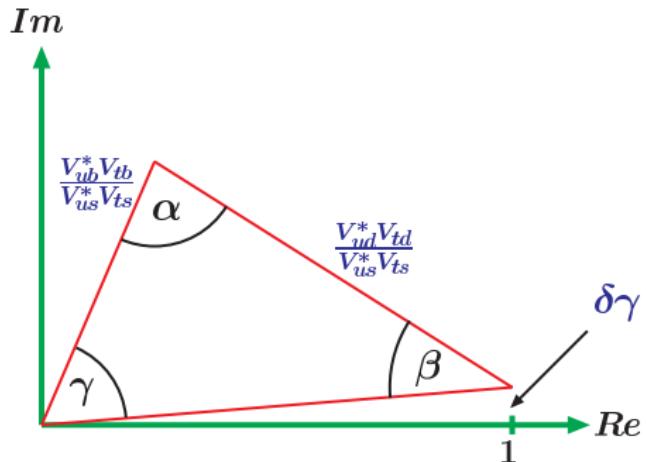
$$V_{ub}^* V_{ud} + V_{cb}^* V_{cd} + V_{tb}^* V_{td} = 0$$

$$V_{ud}^* V_{td} + V_{us}^* V_{ts} + V_{ub}^* V_{tb} = 0$$

- Both correspond to

$$A\lambda^3(\rho + i\eta - 1 + 1 - \rho - i\eta) = 0$$

- This is THE unitarity triangle ...



- Definition of the CKM angles α , β and γ
- To leading order Wolfenstein:

$$V_{ub} = |V_{ub}| e^{-i\gamma} \quad V_{tb} = |V_{tb}| e^{-i\beta}$$

all other CKM matrix elements are real.

- $\delta\gamma$ is order λ^5

- Area of the Triangle(s): Measure of CP Violation
- Invariant measure of CP violation:

$$\text{Im}\Delta = \text{Im} V_{ud} V_{td}^* V_{tb} V_{ub}^* = c_{12} s_{12} c_{13}^2 s_{13} s_{23} c_{23} \sin \delta_{13}$$

- Maximal possible value $\delta_{\text{max}} = \frac{1}{6\sqrt{3}} \sim 0.1$
- CP Violation is a small effect:
Measured value $\delta_{\text{exp}} \sim 0.0001$
- CP Violation vanishes in case of degeneracies: (Jarlskog)

$$\begin{aligned} J &= \text{Det}([M_u, M_d]) \\ &= 2i \text{Im}\Delta (m_u - m_c)(m_u - m_t)(m_c - m_t) \\ &\quad \times (m_d - m_s)(m_d - m_b)(m_s - m_b) \end{aligned}$$

Leptons in the Standard Model

- If the neutrinos are massless:
 - Only left handed neutrinos couple
 - Right handed neutrinos do not have any $SU(2)_L \times U(1)_Y$ quantum numbers
 - No mixing in the lepton sector
- Recent evidence for neutrino mixing:
 - Right handed components couple through the mass term
 - Mixing in the Lepton Sector
- It could be just a copy of the quark sector, but **it may be different due to the properties of the right-handed neutrino**

Multiplets and Quantum Numbers

- Left Handed Leptons: $SU(2)_L$ Doublets

$$L_1 = \begin{pmatrix} \nu_{e,L} \\ e_L \end{pmatrix} \quad L_2 = \begin{pmatrix} \nu_{\mu,L} \\ \mu_L \end{pmatrix} \quad L_3 = \begin{pmatrix} \nu_{\tau,L} \\ \tau_L \end{pmatrix}$$

- Right Handed Leptons: $SU(2)_R$ Doublets

$$\ell_1 = \begin{pmatrix} \nu_{e,R} \\ e_R \end{pmatrix} \quad \ell_2 = \begin{pmatrix} \nu_{\mu,R} \\ \mu_R \end{pmatrix} \quad \ell_3 = \begin{pmatrix} \nu_{\tau,R} \\ \tau_R \end{pmatrix}$$

- Charge and Hypercharge

$$Y = T_{3,R} + \frac{1}{2}(B - L) = T_{3,R} - \frac{1}{2} \quad q = T_{3,L} + Y$$

- Y (and q) project the lower component: Right handed Neutrinos: No charge, no Hypercharge

Majorana Fermions

- A “neutral” fermion can have a Majorana mass
- Charged fermions \Leftrightarrow complex scalar fields
- Majorana fermion: “Real (= neutral) fermion”
- Definition of “complex conjugation” in this case:
Charge Conjugation:

$$\psi \rightarrow \psi^c = C \bar{\psi}^T \quad C = i\gamma_2\gamma_0 = \begin{pmatrix} 0 & -i\sigma_2 \\ -i\sigma_2 & 0 \end{pmatrix}$$

- Properties of C

$$-C = C^{-1} = C^T = C^\dagger$$

- Majorana fermion: $\psi_{\text{Majorana}} = \psi_{\text{Majorana}}^c$
(Just as $\phi^* = \phi$ for a real scalar field)

Majorana Mass Terms

- Mass term for a Majorana fermion: The charge conjugate of a right handed fermion is left handed.
- Possible mass term

$$\mathcal{L}_{MM} = -\frac{1}{2}M(\bar{\nu}_R(\nu_R^c)_L + h.c.)$$

- Only for fields without $U(1)$ quantum numbers
- In the SM: only for the right handed neutrinos !
- Remarks:
 - The Majorana mass of the right handed neutrinos is NOT due to the Higgs mechanism.
 - Thus this majorana mass can be “large”
 - Natural explanation of the small neutrino masses: see-saw mechanism

See Saw Mechanism

- Simplification: One family: ν_L and ν_R
- Total Mass term: **Dirac** and **Majorana** mass

$$\begin{aligned}\mathcal{L}_{mass} = & -m(\bar{\nu}_L \nu_R + \bar{\nu}_R \nu_L) \\ & -\frac{1}{2}M(\nu_R^T C \nu_R + \bar{\nu}_R C \bar{\nu}_R^T)\end{aligned}$$

- We use

$$\overline{(\nu_R^c)_L} (\nu_L^c)_R = \bar{\nu}_L \bar{\nu}_R$$

and the properties of the C matrix ...

$$\mathcal{L}_{mass} = -\frac{1}{2} \left(\bar{\nu}_L \overline{(\nu_R^c)_L} \right) \begin{pmatrix} 0 & m \\ m & M \end{pmatrix} \begin{pmatrix} (\nu_L^c)_R \\ \nu_R \end{pmatrix} + h.c.$$

- Diagonalization of the mass matrix:
→ Majorana mass eigenstates of the Neutrinos
For $M \gg m$ we get

$$m_1 \approx \frac{m^2}{M} \quad m_2 \approx M$$

- One very heavy, practically right handed neutrino
- One very light, practically left handed neutrino
- At energies small compared to M :
Majorana mass term for the left handed neutrino

$$\mathcal{L}_{mass} = -\frac{1}{2} \frac{m^2}{M} (\nu_L^T C \nu_L + \bar{\nu}_L C \bar{\nu}_L^T)$$

- Majorana mass is small if $M \gg m$

Right handed neutrinos in the Standard Model

- In case of three families: **Neutrino Mixing**
- Compact notation for the Leptons:

$$\mathcal{N}_{L/R} = \begin{bmatrix} \nu_{e,L/R} \\ \nu_{\mu,L/R} \\ \nu_{\tau,L/R} \end{bmatrix} \quad \mathcal{E}_{L/R} = \begin{bmatrix} e_{L/R} \\ \mu_{L/R} \\ \tau_{L/R} \end{bmatrix}$$

- Dirac masses are generated by the Higgs mechanism: (as for the quarks)

$$\mathcal{L}_{DM}^N = -\mathcal{N}_L m^N \mathcal{N}_R + h.c.$$

$$\mathcal{L}_{DM}^E = -\mathcal{E}_L m^E \mathcal{E}_R + h.c.$$

- m^N : Dirac mass matrix for the neutrinos
- m^E : (Dirac) mass matrix for e, μ, τ

- Right handed neutrinos \rightarrow Majorana mass term:

$$\mathcal{L}_{MM} = -\frac{1}{2} (N_R^T M C N_R + \bar{N}_R M C \bar{N}_R^T)$$

- M : (Symmetric) Majorana Mass Matrix
- This term is perfectly $SU(2)_L \otimes U(1)$ invariant
- Implementation of the see saw mechanism:
Assume that all Eigenvalues of M are large
- Effective Theory at low energies:
Only light, practically left handed neutrinos
- Effect of right handed neutrino:
Majorana mass term for the light neutrinos

$$\mathcal{L}_{mass} = -\frac{1}{2} (N_L^T m^T M^{-1} m C N_L + \bar{N}_L m^T M^{-1} m C \bar{N}_L^T)$$

Lepton Mixing: PMNS Matrix

- Diagonalization of the Mass matrices:
 - Charged leptons:

$$m^E = U^\dagger m_{diag}^E W$$

- Neutrinos: “Orthogonal” transformation:

$$m^T M^{-1} m = O^T m_{diag}^\nu O \text{ with } O^\dagger O = 1$$

- Again no Effect on neutral currents
- Charged Currents: Interaction with ϕ_+ :

$$\frac{1}{V} \mathcal{N}_L m^E \mathcal{E}_R \phi_+ + \text{h.c.}$$

$$= \frac{1}{V} \bar{\mathcal{N}}_L \mathcal{O}^T (O^* U^\dagger) m_{diag}^E W \mathcal{E}_R \phi_+ + \text{h.c.}$$

- A Mixing Matrix occurs:

$$V_{PMNS} = O^* U^\dagger$$

Pontecorvo Maki Nakagawa Sakata Matrix

- V_{PMNS} is unitary like the CKM Matrix
- Left handed neutrinos are Majorana: **No freedom to rephase these fields!**
 - For n families: n^2 Parameters
 - Only n Relative phases free
 - $\rightarrow n(n - 1)$ Parameters
 - $n(n - 1)/2$ are angles
 - $n(n - 1)/2$ are phases: More sources for CP violation

- Almost like CKM: Three Euler angles θ_{ij}

$$U_{12} = \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad U_{13} = \begin{bmatrix} c_{13} & 0 & s_{13} \\ 0 & 1 & 0 \\ -s_{13} & 0 & c_{13} \end{bmatrix}, \quad U_{23} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix}$$

- A Dirac Phase δ and two Majorana Phases α_1 and α_2

$$U_\delta = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{-i\delta_{13}} \end{bmatrix} \quad U_\alpha = \begin{bmatrix} 1 & 0 & 0 \\ 0 & e^{-i\alpha_1} & 0 \\ 0 & 0 & e^{-i\alpha_2} \end{bmatrix}$$

- PMNS Parametrization: $V_{\text{PMNS}} = U_{23} U_\delta^\dagger U_{13} U_\delta U_{12} U_\alpha$
- $\Theta_{23} \sim 45^\circ$ is “maximal” (atmospheric ν ’s)
- $\Theta_{13} \sim 0$ is small (ν ’s from reactors)
- $\sin \Theta_{13} \sim 1/\sqrt{3}$ is large (solar ν ’s)

Maltoni et al '04

parameter	best fit	2σ	3σ	5σ
$\Delta m_{21}^2 [10^{-5} \text{eV}^2]$	6.9	6.0–8.4	5.4–9.5	2.1–28
$\Delta m_{31}^2 [10^{-3} \text{eV}^2]$	2.6	1.8–3.3	1.4–3.7	0.77–4.8
$\sin^2 \theta_{12}$	0.30	0.25–0.36	0.23–0.39	0.17–0.48
$\sin^2 \theta_{23}$	0.52	0.36–0.67	0.31–0.72	0.22–0.81
$\sin^2 \theta_{13}$	0.006	≤ 0.035	≤ 0.054	≤ 0.11

$$V_{\text{PMNS}} \sim \begin{bmatrix} c_{12} & s_{12} & 0 \\ -\frac{s_{12}}{\sqrt{2}} & \frac{c_{12}}{\sqrt{2}} & -\sqrt{\frac{1}{2}} \\ -\frac{s_{12}}{\sqrt{2}} & \frac{c_{12}}{\sqrt{2}} & -\sqrt{\frac{1}{2}} \end{bmatrix} \sim \begin{bmatrix} \sqrt{\frac{2}{3}} & \sqrt{\frac{1}{3}} & 0 \\ -\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & -\sqrt{\frac{1}{2}} \\ -\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & -\sqrt{\frac{1}{2}} \end{bmatrix}$$

- No Hierarchy !

Consequences of Lepton Mixing

- FCNC Processes in the leptonic Sector:

$$\tau \rightarrow \mu \gamma \quad \mu \rightarrow e \gamma \quad \tau \rightarrow eee \text{ etc.}$$

$$\nu_\tau \rightarrow \nu_e \gamma \quad \nu_\tau - \nu_e \text{ mixing}$$

- Lepton Number Violation:

Right handed Neutrinos are Majorana fermions:

No conserved quantum number corresponding to the rephasing of the right handed neutrino fields

Lepton number violation could feed via conserved $B - L$ into Baryon number violation

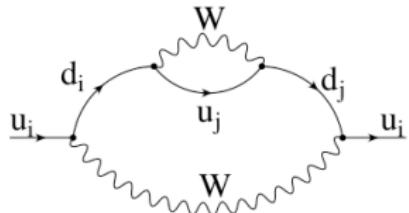
Relation to the Baryon Asymmetry of the Universe ?

Peculiarities of SM Flavour Mixing

- Hierarchical structure of the CKM matrix
- Quark Mass spectrum is widely spread
 $m_u \sim 10 \text{ MeV}$ to $m_t \sim 170 \text{ GeV}$
- PMNS Matrix for lepton flavour mixing is not hierarchical
- Only the charged lepton masses are hierarchical
 $m_e \sim 0.5 \text{ MeV}$ to $m_\tau \sim 1772 \text{ MeV}$
- Up-type leptons \sim Neutrinos have very small masses
- (Enormous) Suppression of Flavour Changing Neutral Currents:
 $b \rightarrow s, c \rightarrow u, \tau \rightarrow \mu, \mu \rightarrow e, \nu_2 \rightarrow \nu_1$

Peculiarities of SM CP Violation

- Strong CP remains mysterious
- Flavour diagonal CP Violation is well hidden:
e.g electric dipole moment of the neutron:
At least three loops (Shabalin)



$$\begin{aligned}
 d_e &\sim e \frac{\alpha_s}{\pi} \frac{G_F^2}{(16\pi^2)^2} \frac{m_t^2}{M_W^2} \text{Im} \Delta \mu^3 \\
 &\sim 10^{-32} e \text{ cm} \quad \text{with } \mu \sim 0.3 \text{ GeV} \\
 d_{\text{exp}} &\leq 3.0 \times 10^{-26} e \text{ cm}
 \end{aligned}$$

- Pattern of mixing and mixing induced CP violation determined by GIM: **Tiny effects in the up quark sector**
 - $\Delta C = 2$ is very small
 - Mixing with third generation is small: charm physics basically “two family”
 - \rightarrow CP violation in charm is small in the SM
- **Fully consistent with particle physics observations**
- **... but inconsistent with matter-antimatter asymmetry**

??? Many Open Questions ???

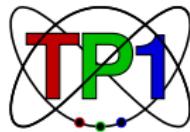
- Our Understanding of Flavour is unsatisfactory:
 - 22 (out of 27) free Parameters of the SM originate from the Yukawa Sector (including Lepton Mixing)
 - Why is the CKM Matrix hierarchical?
 - Why is CKM so different from the PMNS?
 - Why are the quark masses (except the top mass) so small compared with the electroweak VEV?
 - Why do we have three families?
- Why is CP Violation in Flavour-diagonal Processes not observed? (e.g. z.B. electric dipolmoments of electron and neutron)
- Where is the CP violation needed to explain the matter-antimatter asymmetry of the Universe?

Lecture 2

Theory Tools and Phenomenology

Thomas Mannel

Theoretische Physik I Universität Siegen



School on “Physics in the Standard Model and Beyond”

Tblisi, 28.09. - 30.09.2017

What is the Problem?

- Weak interaction: Transitions between quarks
- Observations: Transitions between Hadrons
- **We have to deal with nonperturbative QCD**
- Extraction of fundamental parameters (CKM Elements, CP Phases) requires precise predictions, including error estimates
- → Simple models are out ...
- **Effective Field Theory methods**
- QCD Sum Rules
- Lattice QCD

Contents

1 Effective Field Theories

- EFT in a nutshell
- Effective Weak Hamiltonian
- Introduction to Renormalization Group

2 Heavy Mass Limit

- Heavy Quark Effective Theory
- Heavy Quark Expansion
- Soft Collinear Effective Theory

3 QCD Sum Rules

Effective Field Theories

- Weak decays:

Very different mass scales are involved:

- $\Lambda_{\text{QCD}} \sim 200 \text{ MeV}$: Scale of strong interactions
- $m_c \sim 1.5 \text{ GeV}$: Charm Quark Mass
- $m_b \sim 4.5 \text{ GeV}$: Bottom Quark Mass
- $m_t \sim 175 \text{ GeV}$ and $M_W \sim 81 \text{ GeV}$:
Top Quark Mass and Weak Boson Mass
- Λ_{NP} Scale of “new physics”

- At low scales the high mass particles / high energy degrees of freedom are irrelevant.
- Construct an “effective field theory” where the massive / energetic degrees of freedom are removed (“integrated out”)

Integrating out heavy degrees of freedom

- ϕ : light fields, Φ : heavy fields with mass Λ
- Generating functional as a functional integral
Integration over the heavy degrees of freedom

$$\begin{aligned} Z[j] &= \int [d\phi][d\Phi] \exp \left(\int d^4x [\mathcal{L}(\phi, \Phi) + j\phi] \right) \\ &= \int [d\phi] \exp \left(\int d^4x [\mathcal{L}_{\text{eff}}(\phi) + j\phi] \right) \text{ with} \\ &\quad \exp \left(\int d^4x \mathcal{L}_{\text{eff}}(\phi) \right) = \int [d\Phi] \exp \left(\int d^4x \mathcal{L}(\phi, \Phi) \right) \end{aligned}$$

- For length scales $x \gg 1/\Lambda$: local effective Lagrangian
- Technically: (Operator Product) Expansion in inverse powers of Λ

$$\mathcal{L}_{\text{eff}}(\phi) = \mathcal{L}_{\text{eff}}^{(4)}(\phi) + \frac{1}{\Lambda} \mathcal{L}_{\text{eff}}^{(5)}(\phi) + \frac{1}{\Lambda^2} \mathcal{L}_{\text{eff}}^{(6)}(\phi) + \dots$$

- \mathcal{L}_{eff} is in general non-renormalizable, but ...
- $\mathcal{L}_{\text{eff}}^{(4)}$ is the renormalizable piece
- For a fixed order in $1/\Lambda$: Only a finite number of insertions of $\mathcal{L}_{\text{eff}}^{(4)}$ is needed!
- \rightarrow can be renormalized
- Renormalizability is not an issue here

 $\mu = M_W, m_t$ **Weak Gauge Bosons. Top Quark** $\mu = m_b$

Renormalization

Mass of the b Quark $\mu = m_c$

Renormalization

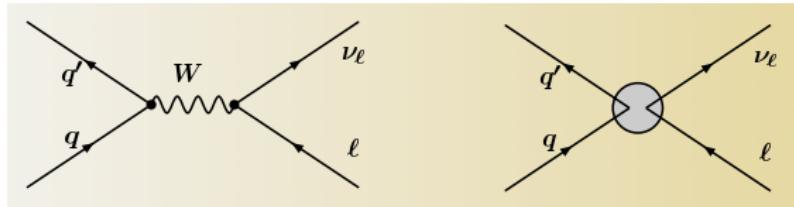
Mass of the charm quark $\mu = \Lambda_{\text{QCD}}$

Renormalization

Hadronic Scale

Effective Weak Hamiltonian

- Start out from the Standard Model
- W^\pm, Z^0, top : much heavier than any hadron mass
- “integrate out” these particles at the scale $\mu \sim M_{\text{Hadron}}$



- W has zero range in this limit:

$$\langle 0 | T[W_\mu^*(x) W_\nu(y)] | 0 \rangle \rightarrow g_{\mu\nu} \frac{1}{M_W^2} \delta^4(x - y)$$

- Effective Interaction (Fermi Coupling)

$$H_{\text{eff}} = \frac{g^2}{\sqrt{2} M_W^2} V_{q'q} [\bar{q}' \gamma_\mu (1 - \gamma_5) q] [\bar{\nu}_\ell \gamma_\mu (1 - \gamma_5) \ell] = \frac{4 G_F}{\sqrt{2}} V_{q'q} j_{\mu, \text{had}} j_{\text{lep}}^\mu$$

Decays of Hadrons

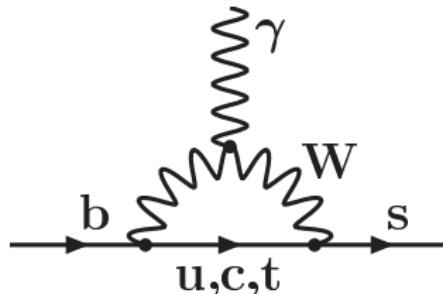
- Leptonic and semi-leptonic decays

$$H_{\text{eff}} = \frac{4G_F}{\sqrt{2}} V_{q'q} [\bar{q}' \gamma_\mu \frac{(1 - \gamma_5)}{2} q] [\bar{\nu}_\ell \gamma_\mu \frac{(1 - \gamma_5)}{2} \ell]$$

- Hadronic decays

$$H_{\text{eff}} = \frac{4G_F}{\sqrt{2}} V_{q'q} V_{QQ'}^* [\bar{q}' \gamma_\mu \frac{(1 - \gamma_5)}{2} q] [\bar{Q} \gamma_\mu \frac{(1 - \gamma_5)}{2} Q']$$

- Rare (FCNC) Decays: **Loop Corrections**
(QCD and electroweak)



- Example: $b \rightarrow s\gamma$

$$\mathcal{A}(b \rightarrow s\gamma) = V_{ub} V_{us}^* f(m_u) + V_{cb} V_{cs}^* f(m_c) + V_{tb} V_{ts}^* f(m_t)$$

- In case of degenerate masses up-type masses:

$$\mathcal{A}(b \rightarrow s\gamma) = f(m) [V_{ub} V_{us}^* + V_{cb} V_{cs}^* + V_{tb} V_{ts}^*] = 0$$

Renormalization Group Running

- H_{eff} is defined at the scale Λ , where we integrated out the particles with mass Λ : [General Structure](#)

$$H_{\text{eff}} = \frac{4G_F}{\sqrt{2}} \lambda_{\text{CKM}} \sum_k \hat{C}_k(\Lambda) \mathcal{O}_k(\Lambda)$$

- $\mathcal{O}_k(\Lambda)$: The matrix elements of \mathcal{O}_k have to be evaluated (“normalized”) at the scale Λ .
- $\hat{C}_k(\Lambda)$: Short distance contribution, contains the information about scales $\mu > \Lambda$
- Matrixelements of $\mathcal{O}_k(\Lambda)$: Long Distance Contribution, contains the information about scales $\mu < \Lambda$

- We could as well imagine a situation with a different definition of “long” and “short” distances, defined by a scale μ , in which case

$$H_{\text{eff}} = \frac{4G_F}{\sqrt{2}} \lambda_{\text{CKM}} \sum_k C_k(\Lambda/\mu) \mathcal{O}_k(\mu)$$

- Key Observation: The matrix elements of H_{eff} are physical Quantities, thus cannot depend on the arbitrary choice of μ

$$0 = \mu \frac{d}{d\mu} H_{\text{eff}}$$

- compute this

$$0 = \sum_i \left(\mu \frac{d}{d\mu} C_i(\Lambda/\mu) \right) \mathcal{O}_i(\mu) + C_i(\Lambda/\mu) \left(\mu \frac{d}{d\mu} \mathcal{O}_i(\mu) \right)$$

- Operator Mixing: **Change in scale can turns the operator \mathcal{O}_i into a linear combination of operators (of the same dimension)**

$$\mu \frac{d}{d\mu} \mathcal{O}_i(\mu) = \sum_j \gamma_{ij}(\mu) \mathcal{O}_j(\mu)$$

and so

$$\sum_i \sum_j \left(\left[\delta_{ij} \mu \frac{d}{d\mu} + \gamma_{ij}(\mu) \right] C_i(\Lambda/\mu) \right) \mathcal{O}_j(\mu) = 0$$

- Assume: The operators \mathcal{O}_j from a basis, then

$$\sum_i \left[\delta_{ij} \mu \frac{d}{d\mu} + \gamma_{ij}^T(\mu) \right] C_j(\Lambda/\mu) = 0$$

- QCD: Coupling constant α_s depends on μ : β -function

$$\mu \frac{d}{d\mu} \alpha_s(\mu) = \beta(\alpha_s(\mu))$$

- C_j depend also on α_s

$$\mu \frac{d}{d\mu} = \left(\mu \frac{\partial}{\partial \mu} + \beta(\alpha_s) \frac{\partial}{\partial \alpha_s} \right)$$

- In an appropriate scheme γ_{ij} depend on μ only through α_s :
 $\gamma_{ij}(\mu) = \gamma_{ij}(\alpha_s(\mu))$

- Renormalization Group Equation (RGE) for the coefficients

$$\sum_i \left[\delta_{ij} \left(\mu \frac{\partial}{\partial \mu} + \beta(\alpha_s) \frac{\partial}{\partial \alpha_s} \right) + \gamma_{ij}^T(\alpha_s) \right] C_j(\Lambda/\mu, \alpha_s) = 0$$

- This is a system of linear differential equations:
→ Once the initial conditions are known, the solution is in general unique
- RGE Running: Use the RGE to relate the coefficients at different scales

- The coefficients are at $\mu = \Lambda$ (at the “matching scale”)

$$C_i(\Lambda/\mu = 1, \alpha_s) = \sum_n a_i^{(n)} \left(\frac{\alpha_s}{4\pi} \right)^n \quad \text{perturbative calculation}$$

- Perturbative calculation of the RG functions β and γ_{ij}

$$\beta(\alpha_s) = \alpha_s \sum_{n=0} \beta^{(n)} \left(\frac{\alpha_s}{4\pi} \right)^{n+1} \quad \gamma_{ij}(\alpha_s) = \sum_{n=0} \gamma_{ij}^{(n)} \left(\frac{\alpha_s}{4\pi} \right)^{n+1}$$

- RG functions can be calculated from loop diagrams:

$$\beta^{(0)} = -\frac{2}{3}(33 - 2n_f) \quad \gamma_{ij} \text{ depends on the set of } \mathcal{O}_i$$

- Structure of the perturbative expansion of the coefficient at some other scale

$$c_i(\Lambda/\mu, \alpha_s) =$$

$$b_i^{00}$$

$$\begin{aligned} &+ b_i^{11} \left(\frac{\alpha_s}{4\pi} \right) \ln \frac{\Lambda}{\mu} + b_i^{10} \left(\frac{\alpha_s}{4\pi} \right) \\ &+ b_i^{22} \left(\frac{\alpha_s}{4\pi} \right)^2 \ln^2 \frac{\Lambda}{\mu} + b_i^{21} \left(\frac{\alpha_s}{4\pi} \right)^2 \ln \frac{\Lambda}{\mu} + b_i^{20} \left(\frac{\alpha_s}{4\pi} \right)^2 \\ &+ b_i^{33} \left(\frac{\alpha_s}{4\pi} \right)^3 \ln^3 \frac{\Lambda}{\mu} + b_i^{32} \left(\frac{\alpha_s}{4\pi} \right)^3 \ln^2 \frac{\Lambda}{\mu} + b_i^{31} \left(\frac{\alpha_s}{4\pi} \right)^3 \ln \frac{\Lambda}{\mu} + \dots, \end{aligned}$$

- LLA (Leading Log Approximation):
Resummation of the b_i^{nn} terms

$$C_i(\Lambda/\mu, \alpha_s) = \sum_{n=0}^{\infty} b_i^{nn} \left(\frac{\alpha_s}{4\pi}\right)^n \ln^n \frac{\Lambda}{\mu}$$

→ leading terms in the expansion of the RG functions

- NLLA (Next-to-leading log approximation):

$$C_i(\Lambda/\mu, \alpha_s) = \sum_{n=0}^{\infty} \left[b_i^{nn} + b_i^{n+1,n} \left(\frac{\alpha_s}{4\pi}\right) \right] \left(\frac{\alpha_s}{4\pi}\right)^n \ln^n \frac{\Lambda}{\mu}$$

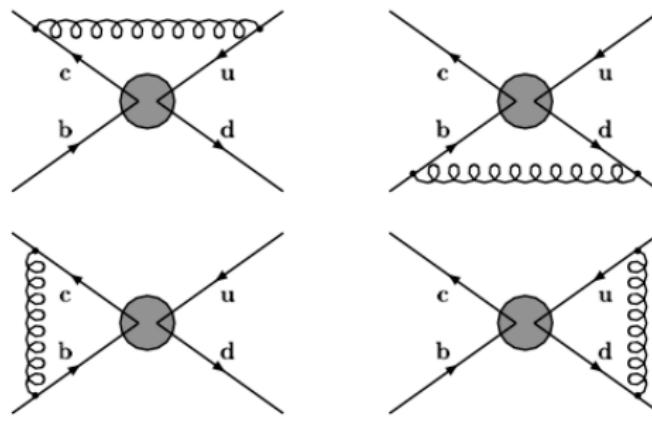
→ next-to-leading terms of the RG functions

- Typical Procedure:
 - “Matching” at the scale $\mu = M_W$
 - “Running” to a scale of the order $\mu = m_b$
 - → includes operator mixing
- Resummation of the large logs $\ln(M_W^2/m_b^2)$
 - “Matching” at the scale $\mu = m_b$
 - “Running” to the scale m_c
- Resummation of the “large” logs $\ln(m_b^2/m_c^2)$
- ...
- Until $\alpha_s(\mu)$ becomes too large ...

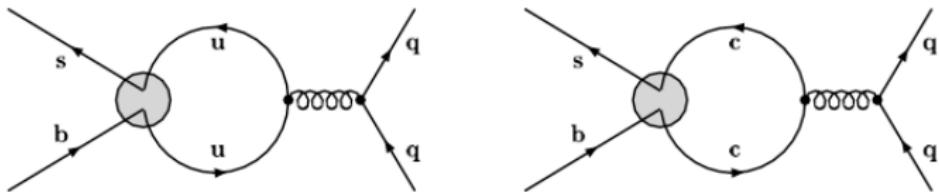
H_{eff} for b decays at low scales

- Effective interaction: $H_{\text{eff}} = \frac{4G_F}{\sqrt{2}} \lambda_{\text{CKM}} \sum_k \hat{C}_k(\Lambda) \mathcal{O}_k(\Lambda)$
- “Tree” Operators”

$$\mathcal{O}_1 = (\bar{c}_{L,i} \gamma_\mu s_{L,j}) (\bar{d}_{L,j} \gamma_\mu u_{L,i}) ,$$
$$\mathcal{O}_2 = (\bar{c}_{L,i} \gamma_\mu s_{L,i}) (\bar{d}_{L,j} \gamma_\mu u_{L,j}) .$$



- If two flavours are equal: **QCD Penguin Operators**



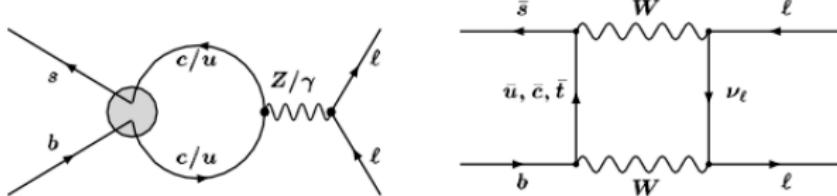
$$\mathcal{O}_3 = (\bar{s}_{L,i} \gamma_\mu b_{L,i}) \sum_{q=u,d,s,c,b} (\bar{q}_{L,j} \gamma^\mu q_{L,j}) ,$$

$$\mathcal{O}_4 = (\bar{s}_{L,i} \gamma_\mu b_{L,j}) \sum_{q=u,d,s,c,b} (\bar{q}_{L,j} \gamma^\mu q_{L,i}) ,$$

$$\mathcal{O}_5 = (\bar{s}_{L,i} \gamma_\mu b_{L,i}) \sum_{q=u,d,s,c,b} (\bar{q}_{R,j} \gamma^\mu q_{R,j}) ,$$

$$\mathcal{O}_6 = (\bar{s}_{L,i} \gamma_\mu b_{L,j}) \sum_{q=u,d,s,c,b} (\bar{q}_{R,j} \gamma^\mu q_{R,i}) .$$

- Electroweak Penguins:
Replace the Gluon by a Z_0 or Photon: $\mathcal{P}_7 \dots \mathcal{P}_{10}$
- Rare (FCNC) Processes:



$$\mathcal{O}_7 = \frac{e}{16\pi^2} m_b (\bar{s}_{L,\alpha} \sigma_{\mu\nu} b_{R,\alpha}) F^{\mu\nu}$$

$$\mathcal{O}_8 = \frac{g}{16\pi^2} m_b (\bar{s}_{L,\alpha} T_{\alpha\beta}^a \sigma_{\mu\nu} b_{R,\alpha}) G^{a\mu\nu}$$

$$\mathcal{O}_9 = \frac{1}{2} (\bar{s}_L \gamma_\mu b_L) (\bar{\ell} \gamma^\mu \ell)$$

$$\mathcal{O}_{10} = \frac{1}{2} (\bar{s}_L \gamma_\mu b_L) (\bar{\ell} \gamma^\mu \gamma_5 \ell)$$

● Coefficients of the Operators (One Loop)

$C_i(\mu)$	$\mu = 10.0 \text{ GeV}$	$\mu = 5.0 \text{ GeV}$	$\mu = 2.5 \text{ GeV}$
C_1	0.182	0.275	0.40
C_2	-1.074	-1.121	-1.193
C_3	-0.008	-0.013	-0.019
C_4	0.019	0.028	0.040
C_5	-0.006	-0.008	-0.011
C_6	0.022	0.035	0.055

$C_i(\mu)$	$\mu = 2.5 \text{ GeV}$	$\mu = 5 \text{ GeV}$	$\mu = 10 \text{ GeV}$
C_7^{eff}	-0.334	-0.299	-0.268
C_8^{eff}	-0.157	-0.143	-0.131
$\frac{2\pi}{\alpha} C_9$	1.933	1.788	1.494

Heavy Quark Limit

Isgur, Wise, Voloshin, Shifman, Georgi, Grinstein, ...

- $1/m_Q$ Expansion: Substantial Theoretical Progress!
- Static Limit: $m_b, m_c \rightarrow \infty$ with fixed (four)velocity

$$v_Q = \frac{p_Q}{m_Q}, \quad Q = b, c$$

- In this limit we have

$$\left. \begin{array}{l} m_{Hadron} = m_Q \\ p_{Hadron} = p_Q \end{array} \right\} v_{Hadron} = v_Q$$

- For $m_Q \rightarrow \infty$ the heavy quark does not feel any recoil from the light quarks and gluons (Cannon Ball)
- This is like the H-atom in Quantum Mechanics !!

Heavy Quark Symmetries

- The interaction of gluons is **identical for all quarks**
- Flavour enters QCD only through the mass terms
 - $m \rightarrow 0$: (Chiral) Flavour Symmetry (Isospin)
 - $m \rightarrow \infty$ Heavy Flavour Symmetry
 - Consider b and c heavy: Heavy Flavour SU(2)
- **Coupling of the heavy quark spin to gluons:**

$$H_{int} = \frac{g}{2m_Q} \bar{Q}(\vec{\sigma} \cdot \vec{B})Q \xrightarrow{m_Q \rightarrow \infty} 0$$

- Spin Rotations become a symmetry
- Heavy Quark Spin Symmetry: SU(2) Rotations
- **Spin Flavour Symmetry Multiplets**

Mesonic Ground States

Bottom:

$$|(\textcolor{red}{b}\bar{u})_{J=0}\rangle = |\textcolor{blue}{B}^-\rangle$$

$$|(\textcolor{red}{b}\bar{d})_{J=0}\rangle = |\textcolor{blue}{\bar{B}}^0\rangle$$

$$|(\textcolor{red}{b}\bar{s})_{J=0}\rangle = |\textcolor{blue}{\bar{B}}_s\rangle$$

$$|(\textcolor{red}{b}\bar{u})_{J=1}\rangle = |\textcolor{blue}{B}^{*-}\rangle$$

$$|(\textcolor{red}{b}\bar{d})_{J=1}\rangle = |\textcolor{blue}{\bar{B}}^{*0}\rangle$$

$$|(\textcolor{red}{b}\bar{s})_{J=1}\rangle = |\textcolor{blue}{\bar{B}}_s^*\rangle$$

Charm:

$$|(\textcolor{red}{c}\bar{u})_{J=0}\rangle = |\textcolor{blue}{D}^0\rangle$$

$$|(\textcolor{red}{c}\bar{d})_{J=0}\rangle = |\textcolor{blue}{D}^+\rangle$$

$$|(\textcolor{red}{c}\bar{s})_{J=0}\rangle = |\textcolor{blue}{D}_s\rangle$$

$$|(\textcolor{red}{c}\bar{u})_{J=1}\rangle = |\textcolor{blue}{D}^{*0}\rangle$$

$$|(\textcolor{red}{c}\bar{d})_{J=1}\rangle = |\textcolor{blue}{D}^{*+}\rangle$$

$$|(\textcolor{red}{c}\bar{s})_{J=1}\rangle = |\textcolor{blue}{D}_s^*\rangle$$

Baryonic Ground States

$$\left| [(ud)_0 \mathbf{Q}]_{1/2} \right\rangle = |\Lambda_Q\rangle$$

$$\left| [(uu)_1 \mathbf{Q}]_{1/2} \right\rangle, \left| [(ud)_1 \mathbf{Q}]_{1/2} \right\rangle, \left| [(dd)_1 \mathbf{Q}]_{1/2} \right\rangle = |\Sigma_Q\rangle$$

$$\left| [(uu)_1 \mathbf{Q}]_{3/2} \right\rangle, \left| [(ud)_1 \mathbf{Q}]_{3/2} \right\rangle, \left| [(dd)_1 \mathbf{Q}]_{3/2} \right\rangle = |\Sigma_Q^*\rangle$$

$$\left| [(us)_0 \mathbf{Q}]_{1/2} \right\rangle, \left| [(ds)_0 \mathbf{Q}]_{1/2} \right\rangle = |\Xi_Q\rangle$$

$$\left| [(us)_1 \mathbf{Q}]_{1/2} \right\rangle, \left| [(ds)_1 \mathbf{Q}]_{1/2} \right\rangle = |\Xi_Q'\rangle$$

$$\left| [(us)_1 \mathbf{Q}]_{3/2} \right\rangle, \left| [(ds)_1 \mathbf{Q}]_{3/2} \right\rangle = |\Xi_Q^*\rangle$$

$$\left| [(ss)_1 \mathbf{Q}]_{1/2} \right\rangle = |\Omega_Q\rangle \quad \left| [(ss)_1 \mathbf{Q}]_{3/2} \right\rangle = |\Omega_Q^*\rangle$$

Wigner Eckart Theorem for HQS

- HQS imply a “Wigner Eckart Theorem”

$$\langle H^{(*)}(v) | Q_v \Gamma Q_{v'} | H^{(*)}(v') \rangle = C_\Gamma(v, v') \xi(v \cdot v')$$

with $H^{(*)}(v) = D^{(*)}(v)$ or $B^{(*)}(v)$

- $C_\Gamma(v, v')$: Computable Clebsh Gordan Coefficient
- $\xi(v \cdot v')$: Reduced Matrix Element
- $\xi(v \cdot v')$: universal non-perturbative Form Faktor:
Isgur Wise Funktion
- Normalization of ξ at $v = v'$:

$$\xi(v \cdot v' = 1) = 1$$

Heavy Quark Effective Theory

- The heavy mass limit can be formulated as an effective field theory
- Expansion in inverse powers of m_Q
- Define the static field h_ν for the velocity ν

$$h_\nu(x) = e^{im_Q\nu \cdot x} \frac{1}{2}(1 + \gamma)b(x) \quad p_Q = m_Q\nu + k$$

- HQET Lagrangian

$$\mathcal{L} = \bar{h}_\nu(i\nu \cdot D)h_\nu + \frac{1}{2m_Q}\bar{h}_\nu(iD)^2h_\nu + \dots$$

- Dim-4 Term: Feynman rules, loops, renormalization...

Application: Determination of V_{cb} from $B \rightarrow D^{(*)}\ell\bar{\nu}_\ell$

- Kinematic variable for a heavy quark: Four Velocity v
- Differential Rates

$$\frac{d\Gamma}{d\omega}(B \rightarrow D^*\ell\bar{\nu}_\ell) = \frac{G_F^2}{48\pi^3} |V_{cb}|^2 m_{D^*}^3 (\omega^2 - 1)^{1/2} P(\omega) (\mathcal{F}(\omega))^2$$

$$\frac{d\Gamma}{d\omega}(B \rightarrow D\ell\bar{\nu}_\ell) = \frac{G_F^2}{48\pi^3} |V_{cb}|^2 (m_B + m_D)^2 m_D^3 (\omega^2 - 1)^{3/2} (\mathcal{G}(\omega))^2$$

- with $\omega = vv'$ and
- $P(\omega)$: Calculable Phase space factor
- \mathcal{F} and \mathcal{G} : Form Factors

Heavy Quark Symmetries

- Normalization of the Form Factors is known at $v v' = 1$: (both initial and final meson at rest)
- Corrections can be calculated / estimated

$$\mathcal{F}(\omega) = \eta_{\text{QED}} \eta_A [1 + \delta_{1/\mu^2} + \dots] (\omega - 1) \rho^2 + \mathcal{O}((\omega - 1)^2)$$

$$\mathcal{G}(1) = \eta_{\text{QED}} \eta_V \left[1 + \mathcal{O} \left(\frac{m_B - m_D}{m_B + m_D} \right) \right]$$

- Parameter of HQS breaking: $\frac{1}{\mu} = \frac{1}{m_c} - \frac{1}{m_b}$
- $\eta_A = 0.960 \pm 0.007$, $\eta_V = 1.022 \pm 0.004$,
 $\delta_{1/\mu^2} = -(8 \pm 4)\%$, $\eta_{\text{QED}} = 1.007$

$B \rightarrow D^{(*)}$ Form Factors

- Lattice Calculations of the deviation from unity

$$\mathcal{F}(1) = 0.903 \pm 0.13$$

$$\mathcal{G}(1) = 1.033 \pm 0.018 \pm 0.0095$$

A. Kronfeld et al.

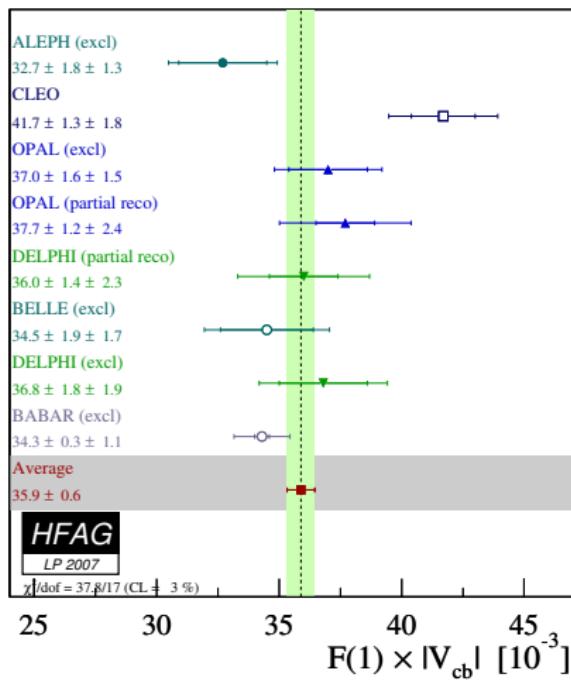
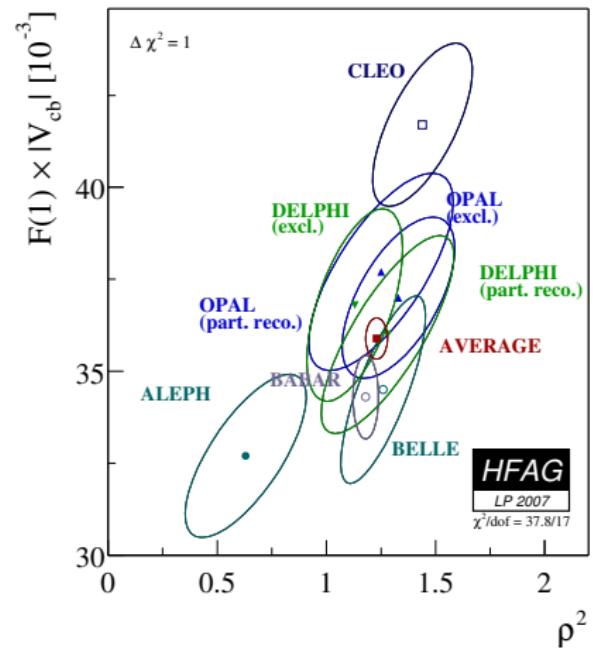
- Zero Recoil Sum Rules

$$\mathcal{F}(1) = 0.86 \pm 0.04$$

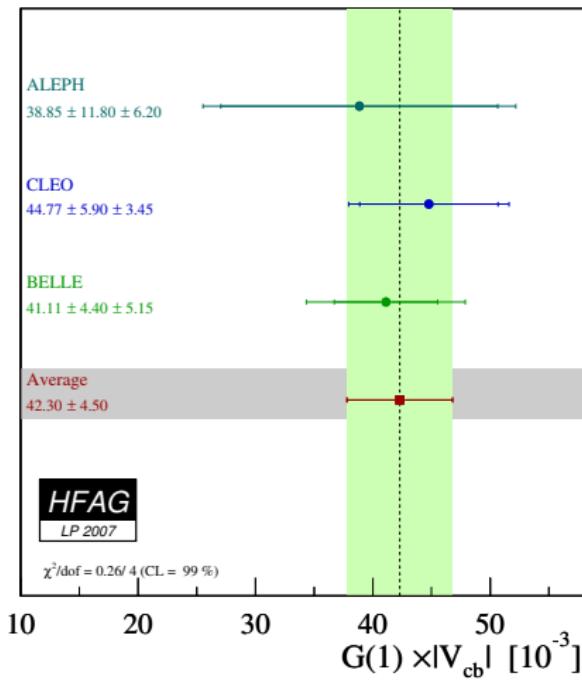
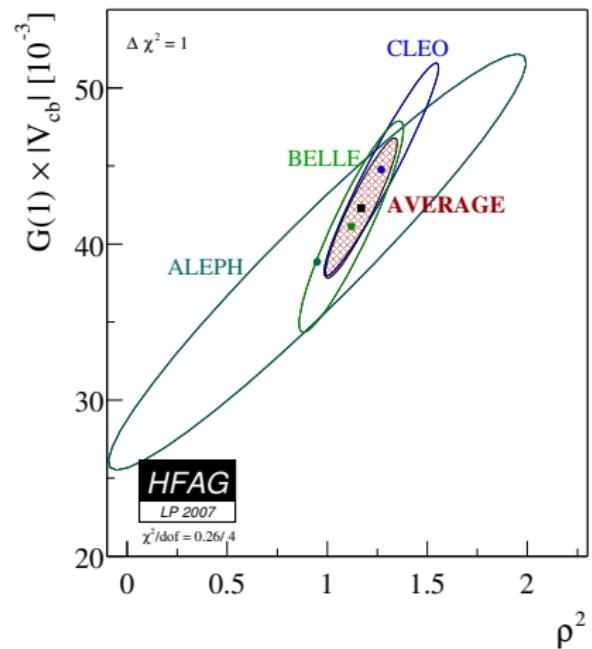
$$\mathcal{G}(1) = 1.04 \pm 0.02$$

P. Gambino et al.

$$B \rightarrow D^* \ell \bar{\nu}_\ell$$



$B \rightarrow D \ell \bar{\nu}_\ell$



Inclusive Decays: Heavy Quark Expansion

Operator Product Expansion = Heavy Quark Expansion

(Chay, Georgi, Bigi, Shifman, Uraltsev, Vainstain, Manohar, Wise, Neubert, M,...)

$$\begin{aligned}\Gamma &\propto \sum_X (2\pi)^4 \delta^4(P_B - P_X) |\langle X | \mathcal{H}_{\text{eff}} | B(v) \rangle|^2 \\ &= \int d^4x \langle B(v) | \mathcal{H}_{\text{eff}}(x) \mathcal{H}_{\text{eff}}^\dagger(0) | B(v) \rangle \\ &= 2 \operatorname{Im} \int d^4x \langle B(v) | T\{\mathcal{H}_{\text{eff}}(x) \mathcal{H}_{\text{eff}}^\dagger(0)\} | B(v) \rangle \\ &= 2 \operatorname{Im} \int d^4x e^{-im_b v \cdot x} \langle B(v) | T\{\tilde{\mathcal{H}}_{\text{eff}}(x) \tilde{\mathcal{H}}_{\text{eff}}^\dagger(0)\} | B(v) \rangle\end{aligned}$$

- Last step: $p_b = m_b v + k$,
Expansion in the residual momentum k

- Perform an OPE: m_b is much larger than any scale appearing in the matrix element

$$\begin{aligned} & \int d^4x e^{-im_b v x} T\{\tilde{\mathcal{H}}_{\text{eff}}(x) \tilde{\mathcal{H}}_{\text{eff}}^\dagger(0)\} \\ &= \sum_{n=0}^{\infty} \left(\frac{1}{2m_Q}\right)^n C_{n+3}(\mu) \mathcal{O}_{n+3} \end{aligned}$$

→ The rate for $B \rightarrow X_c \ell \bar{\nu}_\ell$ can be written as

$$\Gamma = \Gamma_0 + \frac{1}{m_Q} \Gamma_1 + \frac{1}{m_Q^2} \Gamma_2 + \frac{1}{m_Q^3} \Gamma_3 + \dots$$

- The Γ_i are power series in $\alpha_s(m_Q)$:
→ Perturbation theory!

- Γ_0 is the decay of a free quark (“Parton Model”)
- Γ_1 vanishes due to Heavy Quark Symmetries
- Γ_2 is expressed in terms of two parameters

$$2M_H\mu_\pi^2 = -\langle H(v)|\bar{Q}_v(iD)^2Q_v|H(v)\rangle$$

$$2M_H\mu_G^2 = \langle H(v)|\bar{Q}_v\sigma_{\mu\nu}(iD^\mu)(iD^\nu)Q_v|H(v)\rangle$$

μ_π : Kinetic energy and μ_G : Chromomagnetic moment

- Γ_3 two more parameters

$$2M_H\rho_D^3 = -\langle H(v)|\bar{Q}_v(iD_\mu)(ivD)(iD^\mu)Q_v|H(v)\rangle$$

$$2M_H\rho_{LS}^3 = \langle H(v)|\bar{Q}_v\sigma_{\mu\nu}(iD^\mu)(ivD)(iD^\nu)Q_v|H(v)\rangle$$

ρ_D : Darwin Term and ρ_{LS} : Chromomagnetic moment

New: $1/m_b^4$ Contribution Γ_4 (Dassinger, Turczyk, M.)

- Five new parameters:

$\langle \vec{E}^2 \rangle$: Chromoelectric Field squared

$\langle \vec{B}^2 \rangle$: Chromomagnetic Field squared

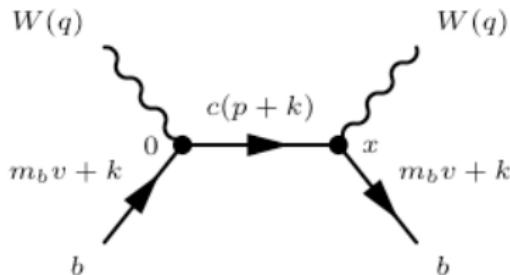
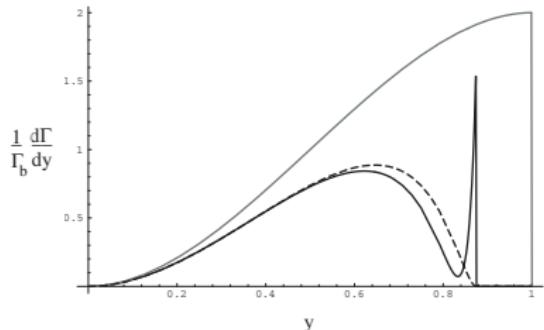
$\langle (\vec{p}^2)^2 \rangle$: Fourth power of the residual b quark momentum

$\langle (\vec{p}^2)(\vec{\sigma} \cdot \vec{B}) \rangle$: Mixed Chromomag. Mom. and res. Mom. sq.

$\langle (\vec{p} \cdot \vec{B})(\vec{\sigma} \cdot \vec{p}) \rangle$: Mixed Chromomag. field and res. helicity

- Some of these can be estimated in naive factorization

Spectra of Inclusive Decays



- Endpoint region: $\rho = m_c^2/m_b^2$, $y = 2E_\ell/m_b$

$$\frac{d\Gamma}{dy} \sim \Theta(1-y-\rho) \left[2 + \frac{\lambda_1}{(m_b(1-y))^2} \left(\frac{\rho}{1-y} \right)^2 \left\{ 3 - 4 \frac{\rho}{1-y} \right\} \right]$$

- Reliable calculation in HQE possible for the moments of the spectrum

Application: V_{cb} from $b \rightarrow c \ell \bar{\nu}$ inclusive

- Tree level terms up to and **including $1/m_b^5$** known
- $\mathcal{O}(\alpha_s)$ and full $\mathcal{O}(\alpha_s^2)$ for the partonic rate known
- $\mathcal{O}(\alpha_s)$ for the μ_π^2/m_b^2 is known
- QCD inspired modelling for the HQE matrix elements
- **New: Complete α_s/m_b^2 , including the μ_G terms**
Alberti, Gambino, Nandi (arXiv:1311.7381)
ThM, Pivovarov, Rosenthal (arXiv:1405.5072,
arXiv:1506.08167)
- **This was the remaining parametrically largest uncertainty**

- Alberti et al.: **Phys.Rev.Lett. 114 (2015) 6, 061802**
and **JHEP 1401 (2014) 147**
 - Calculation of the differential rate including the charm mass
 - partially numerical calculation
- ThM, Pivovarov, Rosenthal:
Phys.Lett. B741 (2015) 290-294
 - Fully analytic calculation
 - limit $m_c \rightarrow 0$
 - Possibility to include m_c in a Taylor series
- Results do agree,
surprisingly steep m_c dependence

Result for V_{cb}

- Inclusive Decay (HQE / OPE)

$$V_{cb} = 42.21 \pm 0.78$$

(Gambino et al. 2015)

- Exclusive decay (Lattice FF)

$$V_{cb} = 39.36 \pm 0.78$$

(Fermilab/Milc 2015)

- Exclusive decay (Zero Recoil Sum rule)

$$V_{cb} = 41.4 \pm 0.9$$

(Gambino et al. 2015)

S_{oft} C_{ollinear} E_{ffective} T_{heory}

- Problem: How to deal with “energetic” light degrees of freedom = Endpoint regions of the spectra ?
- **More than two scales involved!**
- Inclusive Rates in the Endpoint become (Korchemski, Sterman)

$$d\Gamma = H * J * S$$

with $*$ = Convolution

- H : Hard Coefficient Function, Scales $\mathcal{O}(m_b)$
- J : Jet Function, Scales $\mathcal{O}(\sqrt{m_b \Lambda_{\text{QCD}}})$
- S : Shape function, Scales $\mathcal{O}(\Lambda_{\text{QCD}})$

Basics of Soft Collinear Effective Theory

- Heavy-to-light decays:

Kinematic Situations with energetic light quarks

hadronizing into jets or energetic light mesons

p_{fin} : Momentum of a light final state meson

$$p_{\text{fin}}^2 \sim \mathcal{O}(\Lambda_{\text{QCD}} m_b) \quad v \cdot p_{\text{fin}} \sim \mathcal{O}(m_b)$$

- Use light-cone vectors $n^2 = \bar{n}^2 = 0$, $n \cdot \bar{n} = 2$:

$$p_{\text{fin}} = \frac{1}{2}(n \cdot p_{\text{fin}})\bar{n} \quad \text{and} \quad v = \frac{1}{2}(n + \bar{n})$$

- Momentum of a light quark in such a meson:

$$p_{\text{light}} = \frac{1}{2}[(n \cdot p_{\text{light}})\bar{n} + (\bar{n} \cdot p_{\text{light}})n] + p_{\text{light}}^{\perp}$$

SCET Power Counting

- Define the parameter $\lambda = \sqrt{\Lambda_{\text{QCD}}/m_b}$
- The light quark invariant mass (or virtuality) is assumed to be

$$p_{\text{light}}^2 = (n \cdot p_{\text{light}})(\bar{n} \cdot p_{\text{light}}) + (p_{\text{light}}^\perp)^2 \sim \lambda^2 m_b^2$$

- The components of the quark momentum have to scale as

$$(n \cdot p_{\text{light}}) \sim m_b \quad (\bar{n} \cdot p_{\text{light}}) \sim \lambda^2 m_b \quad p_{\text{light}}^\perp \sim \lambda m_b$$

A brief look at SCET

(Bauer, Stewart, Pirjol, Beneke, Feldmann ...)

- QCD quark field q is split into a collinear component ξ and a soft one with $\xi = \frac{1}{4}\not{n}_- \not{n}_+ q$
- The Lagrangian $\mathcal{L}_{\text{QCD}} = \bar{q}(i\not{D})q$ is rewritten in terms of the collinear field

$$\mathcal{L} = \frac{1}{2} \bar{\xi} \not{n}_+ (in_- D) \xi - \bar{\xi} i \not{D}_\perp \frac{1}{in_+ D + i\epsilon} \frac{\not{n}_+}{2} i \not{D}_\perp \xi$$

- Expansion according to the above power counting:

$$in_+ D = in_+ \partial + gn_+ A_c + gn_+ A_{us} = in_+ D_c + gn_+ A_{us}$$

- Leading \mathcal{L} becomes **non-local**: Wilson lines

Practical Consequences of SCET

- Similar to HQS: Relations between form factors at large momentum transfer

$$\langle B(v) | \bar{b} \Gamma q | \pi(p) \rangle \propto \zeta(vp), \zeta_{//}(vp), \zeta_{\perp}(vp)$$

For energetic pion only three independent form factors (Charles et al.)

- Correction can be calculated as in HQET

Basic Idea

(Shifman, Vainshtein, Zakharaov, 1978)

- Start from a suitably chosen correlation function, e.g.

$$T(q^2) = \int d^4x e^{-iqx} \langle 0 | T[j(x)j^\dagger(0)] | 0 \rangle$$

- This can be calculated perturbatively as $q^2 \rightarrow -\infty$.
- On the other hand, it has a dispersion relation

$$T(q^2) = \int \frac{ds}{2\pi} \frac{\rho(s)}{s - q^2 + i\epsilon} + \text{possible subtractions}$$

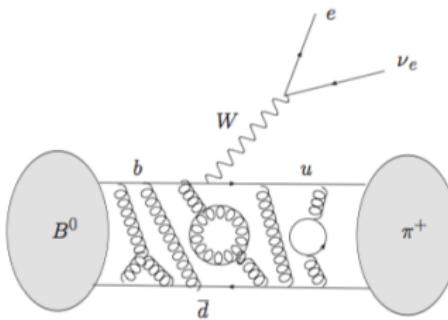
$$\text{with } \rho(s) \sim \langle 0 | j(x) j^\dagger(0) | 0 \rangle = \sum_n \langle 0 | j(x) | n \rangle \langle n | j^\dagger(0) | 0 \rangle$$

- Estimates for $\langle 0 | j(x) | n \rangle$ from e.g. positivity statements

Application: Determination of V_{ub} from exclusive $b \rightarrow u \ell \bar{\nu}$

□ $B \rightarrow \pi \ell \nu_\ell$, determination of $|V_{ub}|$

- decay amplitude parametrized by hadronic form factors



$$\langle \pi^+(p) | \bar{u} \gamma_\mu b | \bar{B}^0(p+q) \rangle = f_{B\pi}^+(q^2) [\dots]_\mu + f_{B\pi}^0(q^2) [\dots]_\mu$$

- $|V_{ub}|$ determination [BaBar, Belle]

$$\left(\frac{1}{\tau_B} \right) \frac{dBR(\bar{B}^0 \rightarrow \pi^+ l^- \nu)}{dq^2} = \frac{G_F^2 |V_{ub}|^2}{24\pi^3} p_\pi^3 |f_{B\pi}^+(q^2)|^2 + O(m_l^2)$$

$$0 < q^2 < (m_B - m_\pi)^2 \sim 26 \text{ GeV}^2,$$

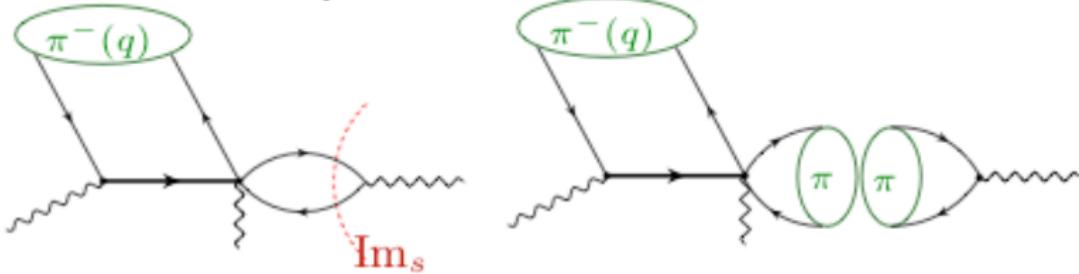
- form factors accessible in lattice QCD at $q^2 \gtrsim 16 \text{ GeV}^2$

$f_+(q^2)$ from QCD Sum Rules

(Ball, Zwicky, Khodjamirian, ...)

- Dispersion Relation and Light Cone Expansion
- Study a Correlation Function

$$F_\lambda(p, q) = i \int d^4x \ e^{ipx} \langle \pi^+(q) | T\{\bar{u}\gamma_\lambda b(x) \ m_b \bar{b} i\gamma_5 d(0)\} | 0 \rangle$$



- Yields an estimate for $f_B f_+(q^2)$
- Limited to small q^2

Results from LCSR

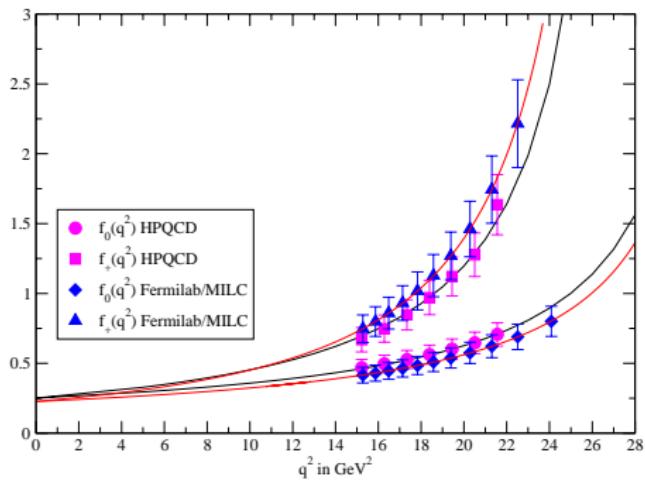
- Uncertainties from
 - Higher Twists (≥ 4)
 - b quark mass and renormalization scale
 - Values of the condensates
 - Threshold and Borel parameters
 - Pion Distribution amplitude

$$f_+(0) = 0.27 \times \left[1 \pm (5\%)_{tw>4} \pm (3\%)_{m_b,\mu} \pm (3\%)_{\langle\bar{q}q\rangle} \pm (3\%)_{s_0^B,M} \pm (8\%)_{a_{2,4}^\pi} \right]$$

- Extrapolation to $q^2 \neq 0$ by a pole model

Lattice QCD for Heavy to Light Form Factors

- Results reliable for large q^2
- Unquenched results are available
- Extrapolation to small q^2 by a pole model Becirevic, Kaidalov



Rate for $q^2 \geq 16 \text{ GeV}^2$

$$|V_{ub}|^2 \times (1.31 \pm 0.33) \text{ ps}^{-1}$$
$$|V_{ub}|^2 \times (1.80 \pm 0.48) \text{ ps}^{-1}$$

(HPQCD / Fermilab MILC)

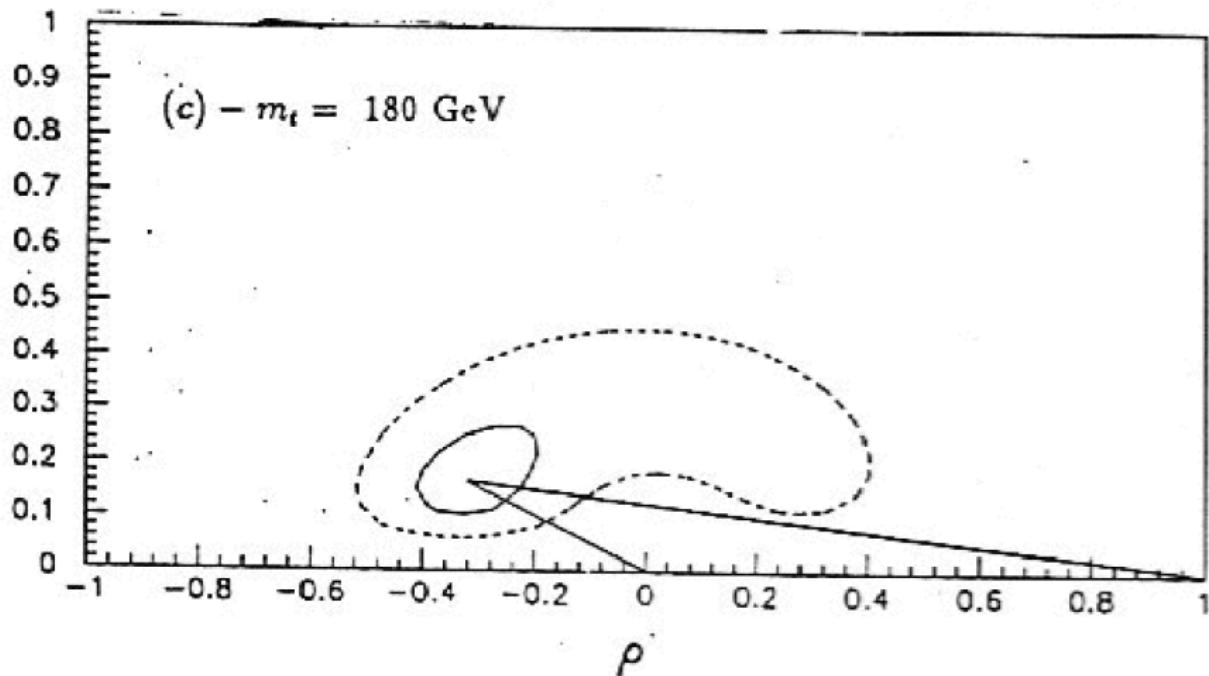
Status of V_{ub}

- From QCD LCSR: $V_{ub} = (3.32 \pm 0.26) \times 10^{-3}$
- PDG 2104:
 - Inclusive (LC-OPE): $V_{ub} = (4.41 \pm 0.25) \times 10^{-3}$
 - Exclusive (Combined): $V_{ub} = (3.28 \pm 0.29) \times 10^{-3}$
- **This is the famous tension between the V_{ub} s**

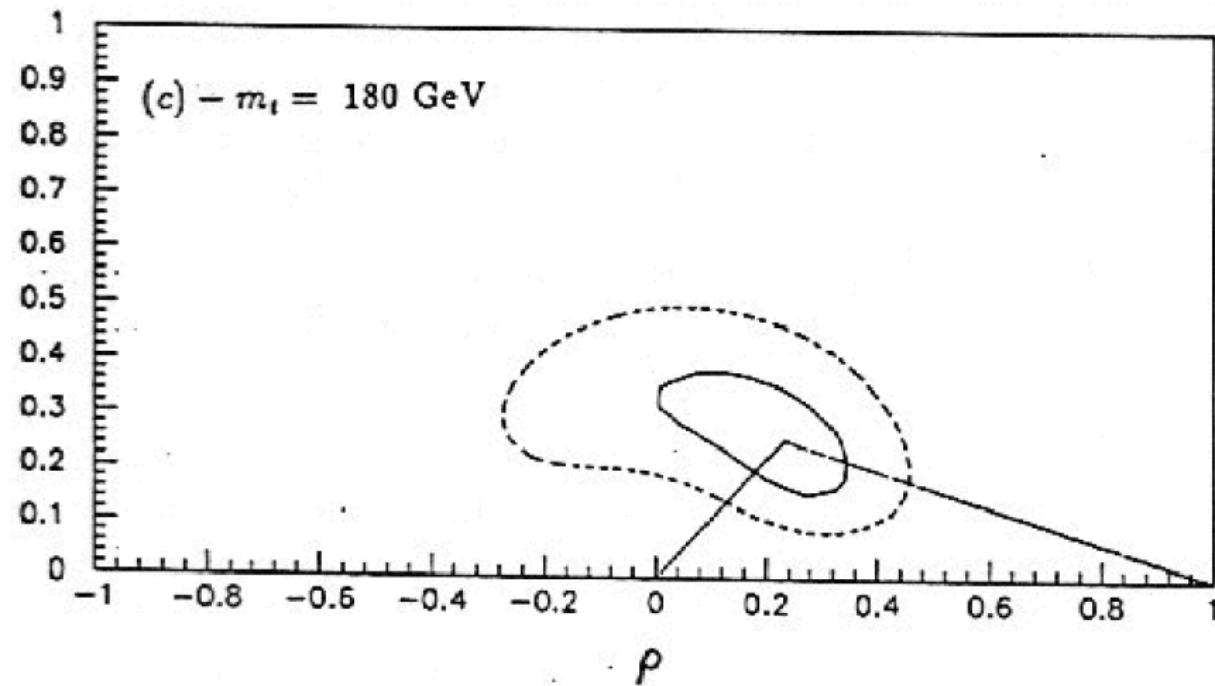
The history of the UT since ~ 1993

- Situation in 1993:
 - HQET was still young (~ 3 years)
 - Hadronic Matrix elements for $\Delta m_d \sim f_B^2$ were quite uncertain
 - V_{ub}/V_{cb} was known at the level of $\sim 20\%$
 - The top quark mass was still $m_t \sim (140 \pm 40)$ GeV
 - No CP violation has been observed except ϵ_K
- The UT still could have been “flat”

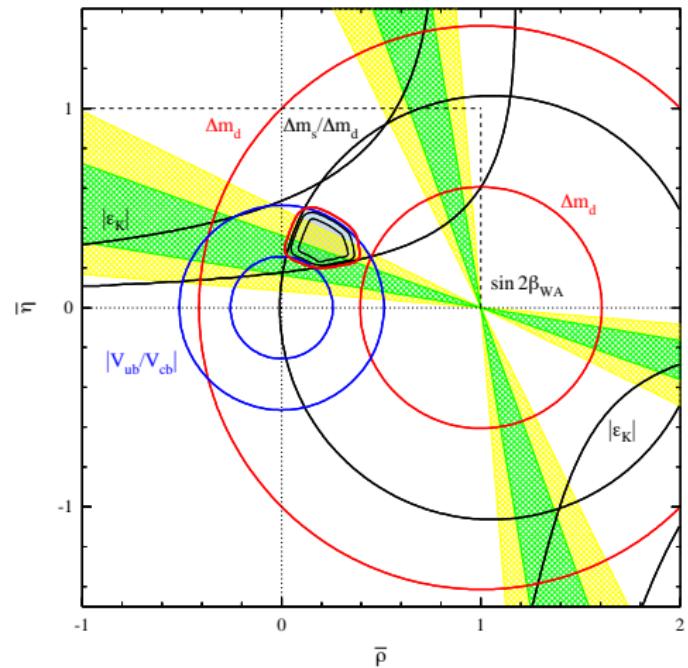
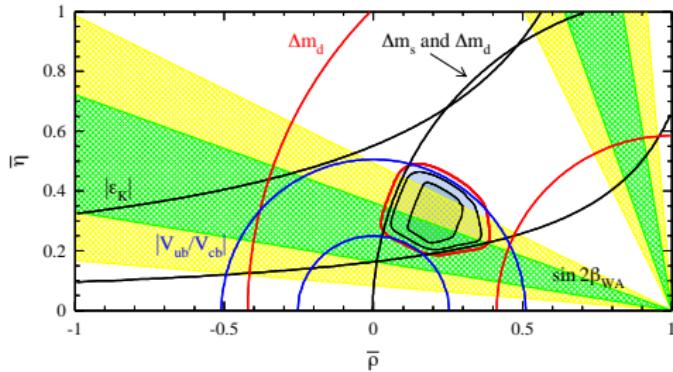
Unitarity triangle 1993: $f_B = 135 \pm 25$ MeV



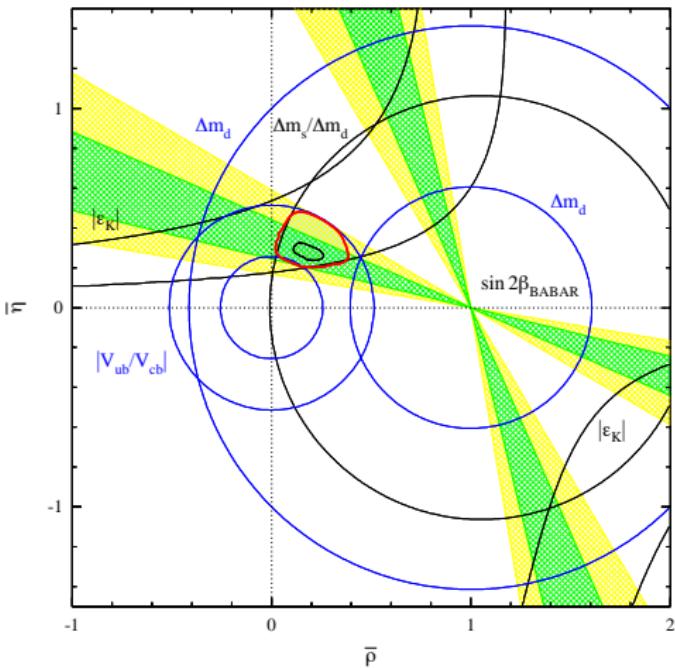
Unitarity triangle 1993: $f_B = 200 \pm 30$ MeV



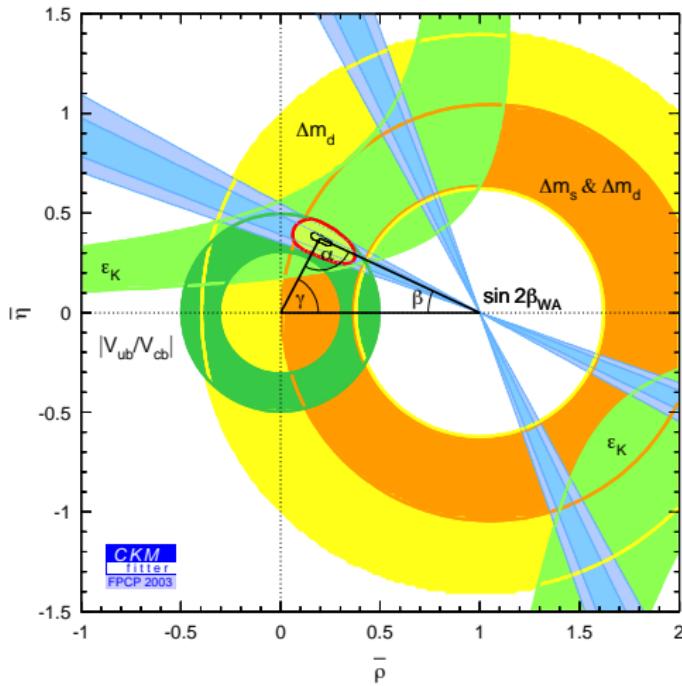
2001: First observation of “Non-Kaon CPV”



Unitarity Triangle 2001

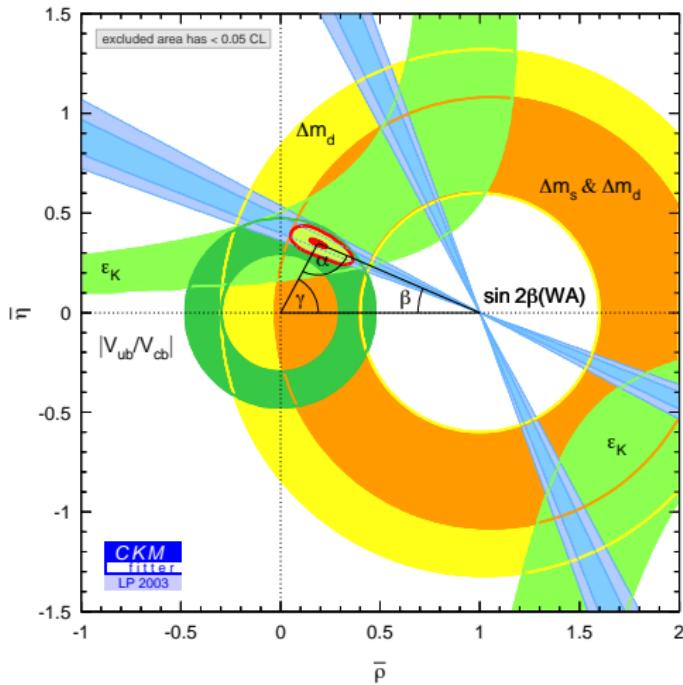


Unitarity Triangle 2002



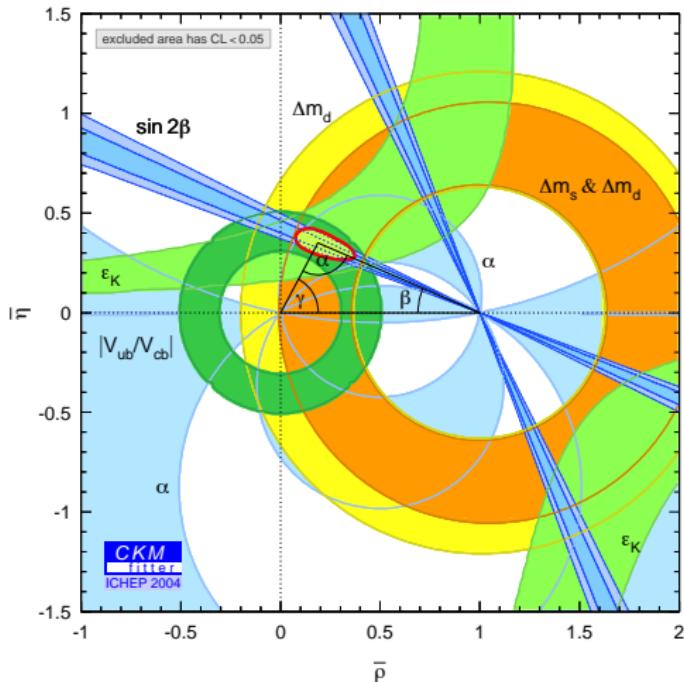
- Some improvement of V_{ub}/V_{cb} through the Heavy Quark Expansion
- More data on $\mathcal{A}_{CP}(B \rightarrow J/\Psi K_s)$

Unitarity Triangle 2003



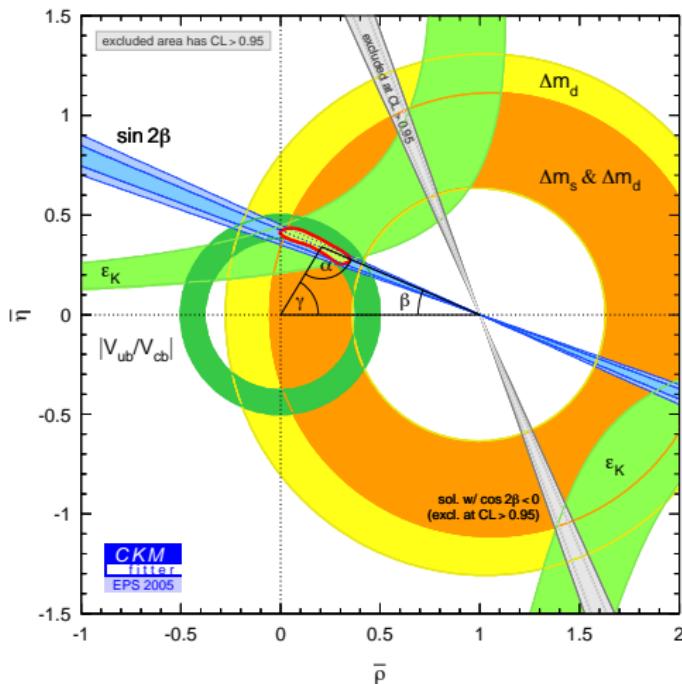
- Slight improvement of $f_B^2 B_B$ from lattice calculations
- Still more data on $\mathcal{A}_{CP}(B \rightarrow J/\Psi K_s)$
- Central value of V_{ub}/V_{cb} slightly moved

Unitarity Triangle 2004



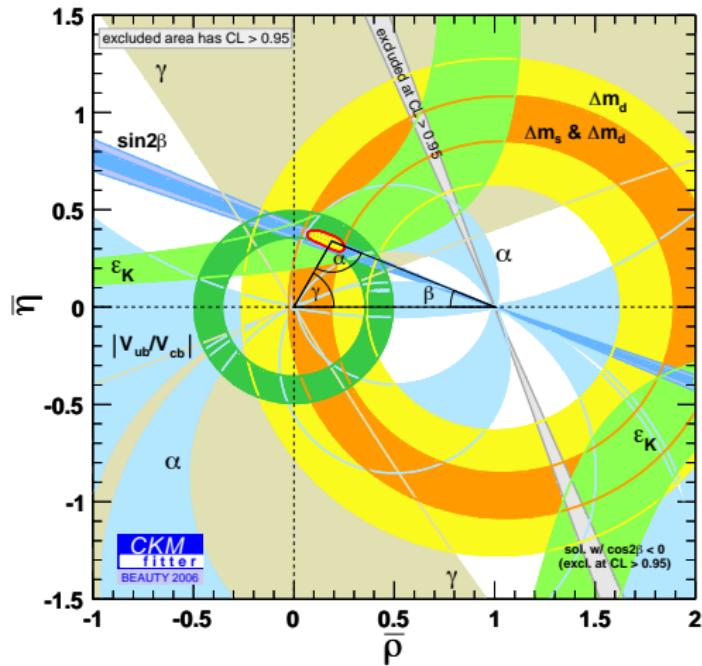
- More improvement of $f_B^2 B_B$ from lattice calculations
- Still more data on $\mathcal{A}_{\text{CP}}(B \rightarrow J/\Psi K_s)$
- First constraints on the angle α from $B \rightarrow \rho\rho$

Unitarity Triangle 2005



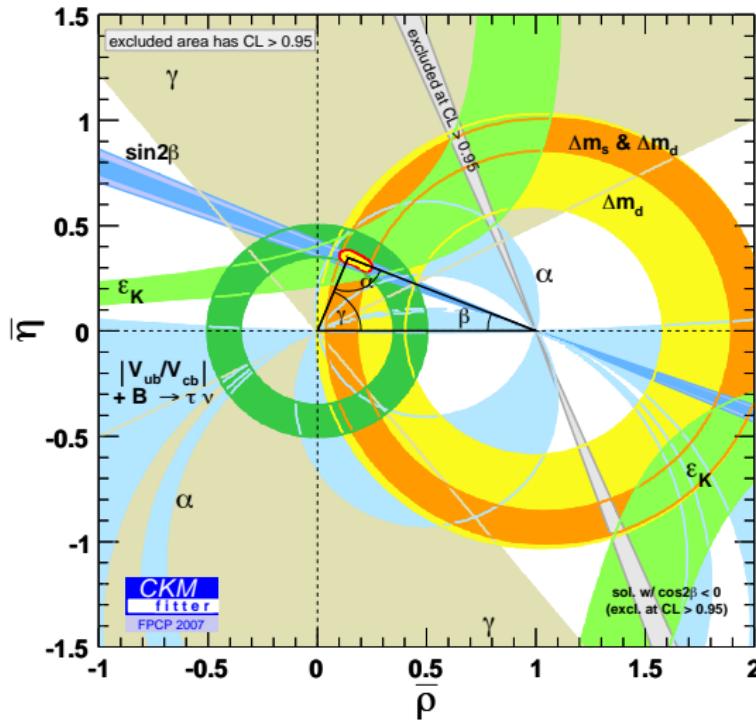
- Still more data on $\mathcal{A}_{\text{CP}}(B \rightarrow J/\Psi K_s)$
- Exclusion of the “wrong branch” of β
- Dramatic Improvement of V_{ub} from the HQE

Unitarity Triangle 2006

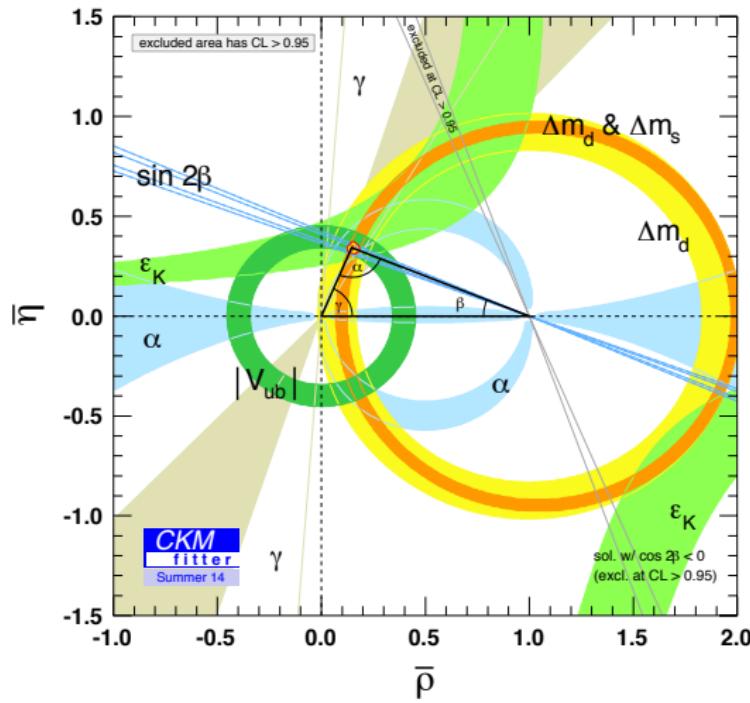


- TEVATRON measurement of Δm_s
- Tighter constraints on α
- First constraints on γ from CPV in $B \rightarrow K\pi$

Unitarity traingle 2007



Unitarity Triangle Now



Conclusions on Tools and Phenomenology

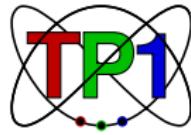
- There are more phenomenological methods which have not been mentioned
 - QCD factorization for non-leptonic decays
 - HQE calculations of neutral meson mixings
 - Multibody decays
 - CP Violation measurements and phenomenology
- We are in the era of precision flavor physics
- Sensitivity to NEW PHYSICS?

Lecture 3

Flavor Beyond the Standard Model

Thomas Mannel

Theoretische Physik I Universität Siegen



School on “Physics in the Standard Model and Beyond”

Tblisi, 28.09. - 30.09.2017

Contents

1 Why Study Flavour Physics?

- Why do we believe in TeV Physics?
- Hints from the leptonic sector

2 Minimal Flavour Violation

- Quarks
- Leptons

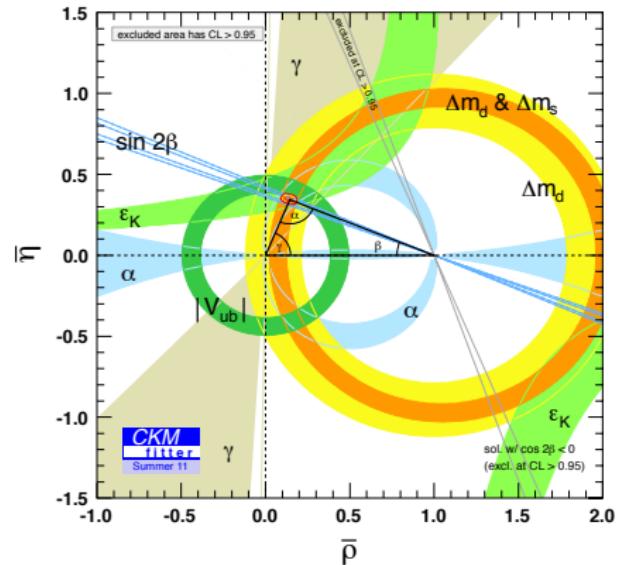
3 Flavor Models

- Guesses for Mass Matrices

Why Study Flavour Physics?

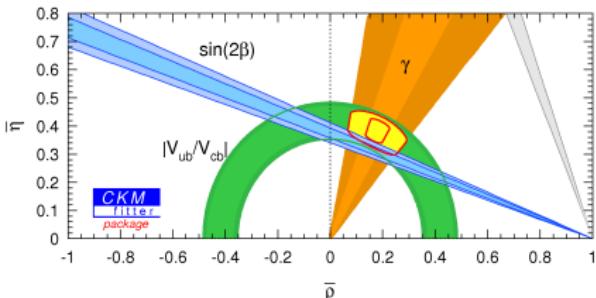
- The Standard Model passed all tests up to the 100 GeV Scale:
- LEP: test of the gauge Structure
- Flavour factories: test of the Flavour Sector

Measurement	Fit	$ O^{\text{meas}} - O^{\text{fit}} /\sigma^{\text{meas}}$
$\Delta\alpha_{\text{had}}^{(5)}(m_Z)$	0.02750 ± 0.00033	0.02759
m_Z [GeV]	91.1875 ± 0.0021	91.1874
Γ_Z [GeV]	2.4952 ± 0.0023	2.4959
σ_{had}^0 [nb]	41.540 ± 0.037	41.478
R_l	20.767 ± 0.025	20.742
$A_{lb}^{0,l}$	0.01714 ± 0.00095	0.01646
$A_l(P_l)$	0.1465 ± 0.0032	0.1482
R_b	0.21629 ± 0.00066	0.21579
R_c	0.1721 ± 0.0030	0.1722
$A_{lb}^{0,b}$	0.0992 ± 0.0016	0.1039
$A_{lb}^{0,c}$	0.0707 ± 0.0035	0.0743
A_b	0.923 ± 0.020	0.935
A_c	0.670 ± 0.027	0.668
$A_l(\text{SLD})$	0.1513 ± 0.0021	0.1482
$\sin^2\theta_{\text{eff}}^{\text{lept}}(Q_{lb})$	0.2324 ± 0.0012	0.2314
m_W [GeV]	80.399 ± 0.023	80.378
Γ_W [GeV]	2.085 ± 0.042	2.092
m_t [GeV]	173.20 ± 0.90	173.27

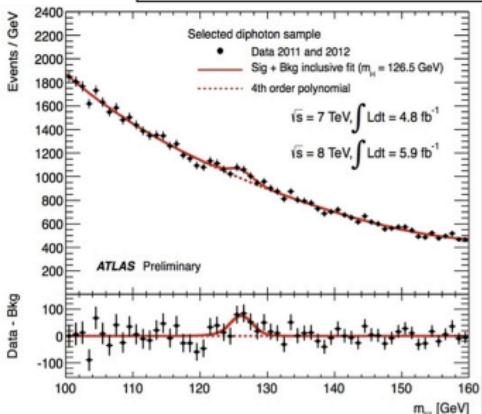
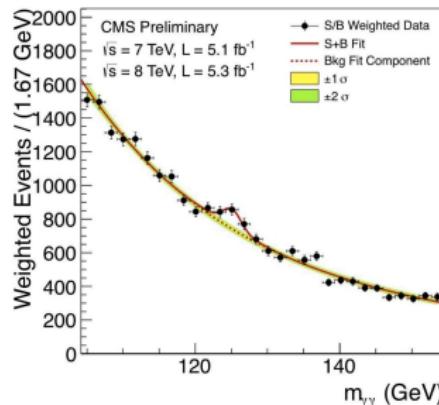


No significant deviation has been found (yet)!

... only a few “tensions”
(= Observables off by 2σ
or even less)

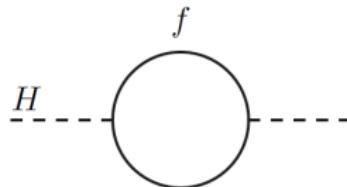


LHC will perform a direct test of the TeV Scale



Why do we believe in TeV Physics?

- Theoretical argument:
- Stabilization of the electroweak scale:



- Quadratic Dependence on the cut-off

$$\Delta m_H^2 = -\frac{\lambda_f^2}{8\pi^2} \Lambda_{\text{UV}}^2$$

- Drives the Higgs mass up to the UV cut off $\Lambda_{\text{UV}} \sim M_{\text{PL}}$

- Stabilization at the TeV scale: e.g. through SUSY:

- Only logarithmic divergence

$$\Delta m_H^2 = m_{\text{soft}}^2 \frac{\lambda}{16\pi^2} \ln \left(\frac{\Lambda_{\text{UV}}}{m_{\text{soft}}} \right)$$

- $m_{\text{soft}} \sim \mathcal{O}(\text{TeV})$:
Splitting between particles and particles

- How strong are these arguments?
- Could there something be wrong with our understanding of
 - electroweak symmetry breaking?
 - scale and conformal invariance?
(c.f. Lee Wick Model)
 - ...
- Does flavour tell us something about this?
.... and what?

What can Flavour tell us?

- Effective field theory picture:
- Standard model (without right handed ν 's) is the (dim-4) starting point.
- Any new physics manifests itself as higher dimensional operators:

$$\mathcal{L} = \mathcal{L}_{\text{dim 4}}^{SM} + \mathcal{L}_{\text{dim 5}} + \mathcal{L}_{\text{dim 6}} + \dots$$

- $\mathcal{L}_{\text{dim } n}$ are suppressed by large mass scales

$$\mathcal{L}_{\text{dim } n} = \frac{1}{\Lambda^{n-4}} \sum_i C_n^{(i)} O_n^{(i)}$$

$O_n^{(i)}$: Operators of dimension n ,

$SU(3)_C \times SU(2)_W \times U(1)_Y$ gauge invariant

$C_n^{(i)}$: dimensionless couplings

Quark Flavour Physics

- For Quarks there is no contribution to $\mathcal{L}_{\text{dim 5}}$
- Some of the $O_j^{(n)}$ mediate $\Delta F = 2$ flavour transitions:

$$O_1^{(6)} = (\bar{s}_L \gamma_\mu d)(\bar{s}_L \gamma^\mu d) \quad (\text{Kaon Mixing})$$

$$O_2^{(6)} = (\bar{b}_L \gamma_\mu d)(\bar{b}_L \gamma^\mu d) \quad (B_d \text{ Mixing})$$

$$O_3^{(6)} = (\bar{b}_L \gamma_\mu 2)(\bar{b}_L \gamma^\mu s) \quad (B_s \text{ Mixing})$$

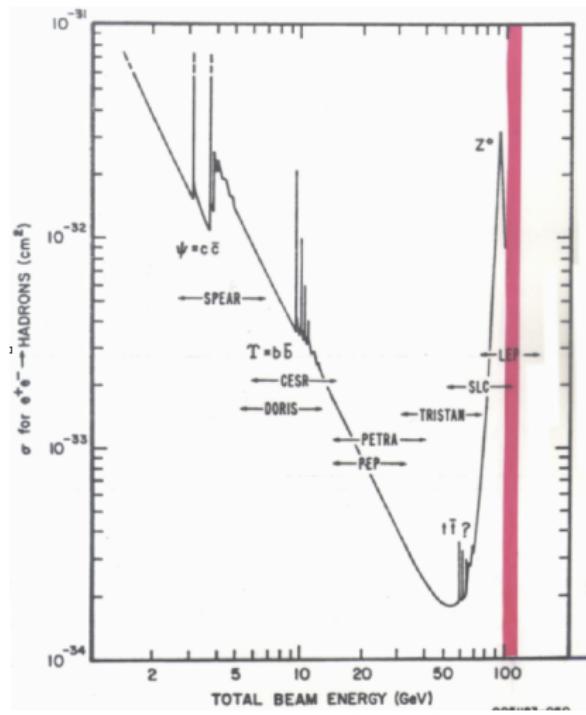
$$O_4^{(6)} = (\bar{c}_L \gamma_\mu u)(\bar{c}_L \gamma^\mu u) \quad (D \text{ Mixing})$$

- $\Lambda \sim 1000 \text{ TeV}$ from Kaon mixing ($C_i = 1$)
- $\Lambda \sim 1000 \text{ TeV}$ from D mixing
- $\Lambda \sim 400 \text{ TeV}$ from B_d mixing
- $\Lambda \sim 70 \text{ TeV}$ from B_s mixing

- “New physics” is around the corner??
- Are the flavour data a hint at a new physics scale well above the TeV scale?
- ... there are a few corners where $\mathcal{O}(1)$ flavour effects are still possible, c.f. Charm CPV
- Are there lessons from history?

The Top Quark Story

- First indirect hint to a heavy top quark:
 $B - \bar{B}$ Oscillation of ARGUS (1987)
- The world in 1987 (“PETRA Days”):
 The top was believed to be at ~ 25 GeV
 ... based on good theoretical arguments
- ARGUS could not have seen anything with a 25 GeV Top (within SM)



- The consequences:
 - (-) No Toponium
 - (-) No Top quark discovery at LEP and SLC
 - (-) No “New Physics $\mathcal{O}(30 \text{ GeV})$ ” just around the corner
 - (+) CP violation in the B sector may become observable
 - (+) GIM is weak for bottom quarks
- This was actually good for Flavour Physics ...
- GIM suppressed decays as a probe for large scales
- From current data: TeV “New Physics” must have a flavour structure close to the one of the SM
- → Concept of “Minimal Flavour Violation” (MFV)

Hints from the leptonic sector

- $\mathcal{L}_{\text{dim 4}}^{\text{SM}}$ does not have a right handed neutrino
- ... thus no mixing for the leptons
- Discovery of Neutrino Oscillations:
Nontrivial Flavour Physics of Leptons
- Important observation: The combination

$$N_i = (H^{c,\dagger} L_i), \quad L_i = \begin{pmatrix} \nu_{L,i} \\ \ell_{L,i} \end{pmatrix}, \quad H^c = (i\tau^2) H^*, \quad H = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$$

has no SM Quantum numbers

- This allows for a Unique dim -5 Operator:
Generates Majorana masses for the ν 's

$$\mathcal{L}_{\text{dim 5}} = \frac{1}{\Lambda_{\text{LNV}}} \sum_{ij} C_5^{ij} (\bar{L}_j H^c)^c (H^{c,\dagger} L_i)$$

- Generates a mixing matrix for the leptons (PMNS Matrix), analogous to the CKM Matrix
- This term is **Lepton Number Violating**, related to the scale Λ_{LNV}
- Small Neutrino masses: Λ_{LNV} must be high, almost as big as the GUT scale?
- Hopefully Λ_{QFV} and Λ_{LFV} is not that high!

Minimal Flavour Violation

- Flavour Violation of TeV “new physics” must be very close to one of the Standard Model
- Concept of “minimal flavour violation”:
All Flavour Violation (and CP violation) is CKM like
(D'Ambrosio et al. '02, Ciuchini et al. '98, Buras et al. '00)
- More precise definition
D'Ambrosio et al., hep-ph/0207036
- Leptonic Sector has also been considered as well
Grinstein et al., hep-ph/0507001, hep-ph/0601111
- Standard Model is Minimally Flavour Violating per definition

- Most of the commonly used new physics models are constructed to solve any others but the flavor problems!
- .. but we hope to see something at LHC!
- So it has to be MFV!

Flavour Symmetry: Quarks

- Largest Quark Flavour Symmetry commuting with the Gauge Group of the Standard Model

$$G_F = SU(3)_{Q_L} \times SU(3)_{U_R} \times SU(3)_{D_R}$$

with

$$Q_L = \begin{pmatrix} U_L \\ D_L \end{pmatrix} \sim (3, 1, 1) \quad U_R \sim (1, 3, 1) \quad D_R \sim (1, 1, 3)$$

- G_F is *explicitely* broken by the Yukawa couplings

$$\mathcal{L}_{\text{Yuk}} = \bar{Q}_L H \textcolor{red}{Y_D} D_R + \bar{Q}_L \widetilde{H} \textcolor{red}{Y_U} U_R$$

- Diagonalization of the Yukawa Couplings

$$Y_D^{\text{diag}} = V_{DL}^\dagger Y_D V_{DR} \quad Y_U^{\text{diag}} = V_{UL}^\dagger Y_U V_{UR}$$

- Leads after Spontaneous Symmetry Breaking to diagonal Mass Matrices for the Quarks
- Note that $V_{UR} \in SU(3)_{U_R}$ and $V_{DR} \in SU(3)_{DR}$
- ... but both V_{UL} and V_{DL} should be $\in SU(3)_{Q_L}$
- this leads to a relative and observable mismatch and

$$V_{\text{CKM}} = V_{UL}^\dagger V_{DL}$$

- Using mass eigenstates, V_{CKM} appears as the matrix of charged current couplings.

Spurions

- Trick to parametrize explicit symmetry breaking:
Introduce “Spurions”
- Spurion: Field with a well defined transformation under the symmetry to be explicitly broken.
- Write all terms that are allowed by the symmetry with a finite number of insertions of the spurion field(s)
- “Freeze” the spurion field(s) to a nonzero value:
“vacuum expectation value”
- Explicit Symmetry breaking = Spontaneous Symmetry Breaking without the Higgs degrees of freedom
- Small symmetry breaking: **Power counting** for the spurion insertions is needed.

Yukawa Couplings as Spurions

- Interpret the Yukawa couplings as spurion fields transforming as

$$Y_U \sim (3, \bar{3}, 1) \quad Y_U \sim (3, 1, \bar{3})$$

- In this way the Yukawa terms become formally invariant under G_F
- “Freezing” the Yukawa couplings to the observed values breaks G_F explicitly.
- Minimal Flavour Violation:** The two spurions Y_U and Y_D are the only sources of flavour violation.

Example $B \rightarrow X_s \gamma$ in MFV

- The $b \rightarrow s \gamma$ decay is a $D_R \rightarrow D_L$ transition.
- $\bar{Q}_L D_R$ is not invariant under G_F
- $\bar{Q}_L Y_D D_R \rightarrow \bar{D}_L m_d^{\text{diag}} D_R$ is flavour diagonal.
- $\bar{Q}_L Y_U Y_U^\dagger Y_D D_R \rightarrow \bar{D}_L V_{\text{CKM}}^\dagger (m_u^{\text{diag}})^2 V_{\text{CKM}} m_d^{\text{diag}} D_R$
 minimal number of spurions for a flavour transition.
- Leading term in $b \rightarrow s \gamma$: $\bar{s}_L V_{ts}^* V_{tb} m_t^2 m_b b_R$
- Right handed helicities suppressed by a power of the quark mass
- FCNC require at least two CKM matrix elements,
 at least one of which is off diagonal
- GIM: no FCNC's in case of degenerate quark masses

Flavour Symmetry: Leptons

- “Minimal field content” (no right handed neutrino)

$$E_L = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} \quad E_R = e_R$$

- Smaller flavour group for the leptons

$$\tilde{G}_F = SU(3)_{E_L} \times SU(3)_{E_R}$$

- Transformations under \tilde{G}_F :
 $E_L \sim (3, 1)$ and $E_R \sim (1, 3)$
- Yukawa term for the leptons

$$L_{\text{Yuk}} = \bar{E}_L H Y_E E_R$$

- Y_E can be diagonalized by a \tilde{G}_F transformation
 No flavour mixing for leptons !

Lepton Flavour Violation: Higher Dimensional Operators

- Dim-5 operator leading to a ν Majorana Mass Term

$$\mathcal{L}_{\text{Maj}} = \frac{1}{2\Lambda_{\text{LN}}} (N^T g N)$$

$$\text{with } N = \left(T_3^{(R)} + \frac{1}{2} \right) H^\dagger L$$

$$\text{and } H = \frac{1}{\sqrt{2}} \begin{pmatrix} v + h_0 + i\chi_0 & \sqrt{2}\phi_+ \\ -\sqrt{2}\phi_- & v + h_0 - i\chi_0 \end{pmatrix}$$

- Λ_{LN} : Scale of lepton number violation
- g : New Spurion field transforming as $(\bar{6}, 1)$ under \tilde{G}_F
- Y_E , g can (in general) not be diagonal simultaneously

New Physics in MFV: Quarks

- Generic point of view: Consider the Standard model as an effective theory, valid at the electroweak scale
- “New Physics” enters below M_W through power suppressed operators with dimensions ≥ 6
- Assume that Y_U , Y_D (and Y_E) are still the only spurions explicitly breaking flavour
- The flavour transitions of the new-physics contributions are still suppressed by the same CKM factors and masses as in the Standard Model
- Focus first on quarks ...

Power Counting and Wolfenstein Parametrization

- Power Counting \sim “small” symmetry breaking
- Implemented by the Wolfenstein parametrization

$$V_{\text{CKM}} \sim \begin{pmatrix} 1 & \lambda & \lambda^3 \\ \lambda & 1 & \lambda^2 \\ \lambda^3 & \lambda^2 & 1 \end{pmatrix} \quad \lambda \sim 0.2$$

- Quark Masses (except top) are small compared to the electroweak scale
- Additional spurion insertions yields more suppression (except for $t \rightarrow b$ transitions, flavour diagonal)
- Consider only minimal number of spurion insertions
 - Up to four insertions for right \rightarrow right transitions

Effective Field Theory Picture of New Physics

- List the various quark transitions:

	U_L	U_R	D_L	D_R
\bar{U}_L	$V_{u_L}^\dagger Y_D Y_D^\dagger V_{u_L}$ $= V_{CKM} \hat{m}_D^2 V_{CKM}^\dagger$	$V_{u_L}^\dagger Y_D Y_D^\dagger Y_U V_{u_R}$ $= V_{CKM} \hat{m}_D^2 V_{CKM}^\dagger \hat{m}_U$	$V_{u_L}^\dagger V_{d_L}$ $= V_{CKM}$	$V_{u_L}^\dagger Y_D V_{d_R}$ $= V_{CKM} \hat{m}_D V_{CKM}^\dagger$
\bar{U}_R	h.c.	$V_{u_R}^\dagger Y_U^\dagger Y_D Y_D^\dagger Y_U V_{u_R}$ $= \hat{m}_U V_{CKM} \hat{m}_D^2 V_{CKM}^\dagger \hat{m}_U$	$V_{u_R}^\dagger Y_U^\dagger V_{d_L}$ $= \hat{m}_U V_{CKM}$	$V_{u_R}^\dagger Y_U^\dagger Y_D V_{d_R}$ $= \hat{m}_U V_{CKM} \hat{m}_D V_{CKM}^\dagger$
\bar{D}_L	h.c.	h.c.	$V_{d_L}^\dagger Y_U Y_U^\dagger V_{d_L}$ $= V_{CKM}^\dagger \hat{m}_U^2 V_{CKM}$	$V_{d_L}^\dagger Y_U Y_U^\dagger Y_D V_{d_R}$ $= V_{CKM}^\dagger \hat{m}_U^2 V_{CKM} \hat{m}_D$
\bar{D}_R	h.c.	h.c.	h.c.	$V_{d_R}^\dagger Y_D^\dagger Y_U Y_U^\dagger Y_D V_{d_R}$ $= \hat{m}_D V_{CKM}^\dagger \hat{m}_U^2 V_{CKM} \hat{m}_D$

- Loops may change the number of insertions:
 Suppressed by powers of Wolfenstein λ

New Physics in MFV: Leptons

- Majorana term is a “new physics” contribution
- Distinguish between the scale of lepton flavour violation and lepton number violation
- For dim-6 operators: Possible Spurion combinations

$$g^\dagger \times g \sim \bar{6} \times 6 = 1 + 8 + 27$$

- Bilinears (e.g. $\tau \rightarrow \mu\gamma$) are governed by $\Delta = (g^\dagger \times g)_8$
→ predicts e.g. relations between $\tau \rightarrow \mu\gamma$ and $\tau \rightarrow e\gamma$
- Four fermion operators for e.g. $\tau \rightarrow \mu\mu\mu$ can have a contribution of the 27-plet
- Even in MFV no relation between $\tau \rightarrow e\gamma$ and $\tau \rightarrow e\mu\mu$

Flavor Models

Top-down instead of bottom-up

- How to get an Idea about the mass matrices:
 - Guess some matrices with as few parameters as possible:
“Textures” as many zeros as possible
 - Use some symmetry to obtain (at least qualitatively) some insight into mass matrices
e.g. a simple horizontal $U(1)$
- „, or are the parameters “just so”?

Textures: Two Family Example

- Find two matrices \mathcal{M}_u and \mathcal{M}_d with less than five parameters
- → Relation(s) between m_u , m_c , m_d , m_s and Θ_C
Simplest guess: Diagonal \mathcal{M}_u and nondiagonal \mathcal{M}_d

$$\mathcal{M}_u = \begin{pmatrix} m_u & 0 \\ 0 & m_c \end{pmatrix} \quad \mathcal{M}_d = \begin{pmatrix} 0 & a \\ a & 2b \end{pmatrix}$$

- Matrix diagonalizing \mathcal{M}_d is already the CKM Matrix
- Four Parameters → One relation !
- Model predicts $\tan \Theta_C = \sqrt{\frac{m_d}{m_s}}$ (which is not bad!)

- Has been done also for three families
- Guesses often supported by assuming (discrete) symmetries
- Typical structure: $\tan \theta_{ij} \sim \sqrt{m_i/m_j}$
- Remains Guesswork, until some deeper understanding of the guesses emerges.

Flavour Invariants

- Precise form of the mass matrices depend on the basis choice in Flavor space
- Basis independent statements only as a relation between Invariants
- For the two-family case these are e.g.

$$I_1 = \text{Tr}(Y_U Y_U^\dagger) \quad I_2 = \text{Tr}(Y_D Y_D^\dagger)$$

$$I_3 = \text{Tr}(Y_U Y_U^\dagger Y_U Y_U^\dagger) \quad I_4 = \text{Tr}(Y_D Y_D^\dagger Y_D Y_D^\dagger)$$

$$I_5 = \text{Tr}(Y_D Y_D^\dagger Y_U Y_U^\dagger)$$

- There are as many independent Invariants as there are physical parameters

Conclusion on New Physics in Flavor

- Unlike in the gauge sector we do not have a guiding principle to construct a theory of flavor
- CKM as well as MFV is just a parametrization of ignorance
- **No new physics model explaining flavor**
- ... maybe with the exception of some “Frogatt Nielsen like” models
- **can the parameters be “just so”?**

Overall Conclusions

- BaBar and Belle established the CKM picture of flavor
- LHCb is running, squeezing the SM further:
 - $B_s \rightarrow \mu\mu$
 - $B \rightarrow K^* \ell\ell$
 - V_{ub} measurements
- Belle 2 is upcoming:
 - Factor of 10 or 20 more data
 - Significant increase in precision
 - Look for rare and impossible decays
- At the end:

Possible a clear indirect hint to BSM physics?
- But how can we finally tell, if the scales are really very high?