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Preliminary Remarks

@ Flavour Physics:

Transitions between different kinds of Quarks
Q=2/3 Q=-1/3

t Q=2/3 Q=1/3

logio [M/(1 GeV/c?]

@ lts all about weak interactions ...
@ Strong interactions as a “background”
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@ Likewise for Leptons, but

@ no strong interactions here

@ Neutrinos hard to detect
— Flavour Identification

Ve VM A\
ml 1my?
solar~3x10%V2 |,
L,
atmospheric
~3x10eV? 4
atmospheric
mzz__ e — ~3x10%eV?
2 solar~5x10-%eV? )
H’l] £ __lﬂaﬁ
P ——
? ?
0 0

normal inverted

nEw lqll."'l'q'
Thomas Mannel, University of Siegen Flavour Physics, Lecture 1




More reading ...

@ R. Fleischer: Flavour Physics and CP Violation
Lectures given at European School of High-Energy
Physics 2005
hep-ph/0608010 — Non-leptonics and CP

@ A. Buras: Flavor physics and CP violation
Lectures given at European School of High-Energy
Physics 2004
hep-ph/0505175 — rare FCNC decays

@ A. Buras: Minimal flavor violation
Lectures given at 43rd Cracow School of Theoretical
Physics 2003
hep-ph/0310208 — MFV and New Physics
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@ Y. Nir: Probing new physics with flavor physics
Lectures given at 2nd Joint Fermilab-CERN Hadron
Collider Physics Summer School 2007
arXiv:0708.1872 [hep-ph] — Mainly New Physics

@ A. Bevan, B. Golob, T. Mannel, S. Prell, B. Yabsley
(eds.) The Physics of the B Factories
Eur.Phys.J. C74 (2014) 3026, (926 pages)
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Outline of the course

@ Lecture 1: Flavour in the Standard Model
@ Lecture 2: Theoretical Tools and Phenomenology
@ Lecture 3: Flavour beyond the Standard Model
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Lecture 1
Flavour in the Standard Model

Thomas Mannel

Theoretische Physik | Universitat Siegen

w ol

School on “Physics in the Standard Model and Beyond”
Tblisi, 28.09. - 30.09.2017
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Outline of Lecture 1

@ Quarks in the SM: SU(2), x U(1)y
@ Symmetries and Quantum Numbers
@ Quark Mixing and CKM Matrix

e Leptons In the Standard Model
@ Assignement of Quantum Numbers
@ See Saw Mechanism
@ PMNS Matrix

e Peculiarities of Flavour in the Standard Model
@ Peculiarities of SM CP / Flavour
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Quarks in the SM: SU(2), x U(1)y Symmetries and Quantum Numbers

Quark Mixing and CKM Matrix

Gauge Structure of the Standard Model

| assume a few things to be known:
@ The Standard Model is a gauge theory based on
SU(S)QCD & SU(2) Weak & U(1 )Hypercharge
@ Eight gluons, three weak gauge bosons, one photon

@ Matter (quarks and leptons):

Multiplets of the gauge group — Quantum numbers
@ Spontaneous Symmetry Breaking:

Introduction of scalar fields

@ Massless Goldstone Modes:
Higgs Mechanism:
¢ — longitudinal modes of gauge bosons: ¢ ~ 9, W*
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Quarks in the SM: SU(2), x U(1)y Symmetries and Quantum Numbers

Quark Mixing and CKM Matrix

Matter Fields: Quarks

@ Left Handed Quarks:
SU(3)¢ Triplets, SU(2), Doublets

Q:(i)@:(g)@z(&)

SU(2), will be gauged
@ Right Handed Quarks:
SU(3)¢ Triplets, SU(2)g Doublets

B Uugr . Cr . lr
Q1—(dR>CI2—(SR>CI3—(bR)

SU(2)g introduced “artificially”



Quarks in the SM: SU(2), x U(1)y Symmetries and Quantum Numbers

Quark Mixing and CKM Matrix

Quantum Numbers

@ Hypercharge
1
Y — TS,R T+ E(B— L)
@ Charge

1
q=Tor+Y =T+ Tsn+5(B-1)

Thomas Mannel, University of Siegen Flavour Physics, Lecture 1



Quarks in the SM: SU(2), x U(1)y Symmetries and Quantum Numbers

Quark Mixing and CKM Matrix

Higgs Fields: Standard Model

@ Single SU(2) Doublett: Two Complex Fields

o= (%)

@ Charge Conjugate Field is also an SU(2) Doublett

i b Po
¢—(IT2)¢ _<—¢:—¢i)

@ It is useful to gather these into a 2 x 2 matrix

N
H‘<—¢ %)
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Quarks in the SM: SU(2); x U(1)y

Symmetries and Quantum Numbers
Quark Mixing and CKM Matrix

@ Transformation Properties: L € SU(2);:
b - LP d Lo

@ Transformation Properties: R € SU(2)g:
oo oo o o
(&)-a(2) (%)-"(%)

@ In total:
H — LHR'  (remember Q — LQ q — Rq)
@ Hypercharges

Yo=-0 Yd=0 YH=-HTsp
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Quarks in the SM: SU(2), x U(1)y Symmetries and Quantum Numbers

Quark Mixing and CKM Matrix

Gauge Interactions

@ SU(3)coior is gauged (not relevant for us now)

@ SU(2), is gauged Three W} Bosons

@ Hypercharge is gauged One B* Boson

@ Recipe: Replace the ordinary derivative in the kinetic
terms by the covariant one

oM — D' = " —igT WF —iYB"
+QCD interactions

@ Weinberg rotation between W} and B - - -

@ | assume you have heard the rest of the story ...

@ This is not relevant for the phenomenon of masses
and mixing !
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Quarks in the SM: SU(2), x U(1)y Symmetries and Quantum Numbers

Quark Mixing and CKM Matrix

Structure of the Standard Model

@ Start out from an SU(2), x SU(2)z symmetric case:
@ Kinetic Term for Quarks and Higgs (i: Generation)

= _ 1
Lyin = Z [QPQ; + Gidai] + ETI [(0uH) (0" H)]
@ Potential for the Higgs field
V = V(H) = V(Tr [H"H])

@ Interaction between Quarks and Higgs

L)=— Zy,-,-C_D;Hq,- + h.c.

i
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Quarks in the SM: SU(2); x U(1)y

Symmetries and Quantum Numbers
Quark Mixing and CKM Matrix

@ y; can be made diagonal: Any Matrix y can be
diagonalized by a Bi-Unitary Transformation:

Y= U]LydiagW
@ Thus
L=~ Z Qi(UNiykWigHg; + h.c.

ijk
@ Rotation of Q; and g;:
Q=UQ q=Wq

@ This has no effect on the kinetic term:
yij = yi0j is the general case!

L=— ZYIQini + h.c.
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Quarks in the SM: SU(2), x U(1)y Symmetries and Quantum Numbers

Quark Mixing and CKM Matrix

Sponaneous Symmetry Breaking

@ The Higgs Potential is (Renormalizability):
V = & (Tr [H'H]) + A (Tr [HTH])?

@ For k < 0 we have SSB:
H acquires a Vacuum Expectation Value (VEV)

Tr [(H)(H)] = —% >0

@ Choice of the VEV

<Regg>=vor <H>=v15,o
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Quarks in the SM: SU(2); x U(1)y

Symmetries and Quantum Numbers
Quark Mixing and CKM Matrix

@ Three massless fields: ¢, ¢_, Im¢yg:
Goldstone Bosons
@ ¢9 — V + ¢, One massive field

@ Higgs Mechanism: The massless scalars become the
longitudinal modes of the massive vector bosons:

Yt~ W
* Imgg ~ 942,

@ ¢,: Physical Higgs Boson
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Quarks in the SM: SU(2); x U(1)y

Symmetries and Quantum Numbers
Quark Mixing and CKM Matrix

@ The Quarks become massive:

Li==> yvQaq+ hc. +--
i

@ We have Q,q; = U ug + d.dg etc.
@ Thus

Lmass = —my(Ou + dd) — mg(cc + 8s) — my(tt + bb)

@ This is not (yet) what we want ...
@ We still have too much symmetry!
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Quarks in the SM: SU(2), x U(1)y Symmetries and Quantum Numbers

Quark Mixing and CKM Matrix

Custodial SU(2)

@ Symmetry of the Higgs Sector in the Standard Model:
SU(2). @ SU(2)s =3 SU(2)4a = SU(2)c

@ Note that we cannot have explicit breaking of SU(2)g
in the Higgs sector:

Tr [HT/HT} =0

@ SU(2)c: Custodial Symmetry!
— Extra Symmetry in the Higgs sector !

@ This is more than needed: Only U(1)y is needed
@ U(1)y will be related to the 73 direction of SU(2)g
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Quarks in the SM: SU(2); x U(1)y

Symmetries and Quantum Numbers
Quark Mixing and CKM Matrix

@ Consequences of SU(2)c¢:
e Relation between charged and neutral currents:
p parameter
e Masses of W and of Z° are equal
e Up- and Down-type quark masses are equal in each
family
e No mixing occurs among the families

@ SU(2)¢ is broken by:

e Yukawa Couplings
e Gauging only the Hypercharge

y =P +%(B— L)
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Quarks in the SM: SU(2), x U(1)y Symmetries and Quantum Numbers

Quark Mixing and CKM Matrix

Breaking SU(2)¢: Yukawa Couplings

@ Explicit breaking of SU(2)¢ by Yukawa Couplings:

Ly=-Y yjQH(2Tsp)q + h.c.
if
@ Effect of this term:
e Introduces a splitting between up- and down quark
masses

e Introduces mixing between different families
o Affects the p parameter

@ Total Yukawa Coupling term:

Li+ Ly ==Y QH(yioj+2Tsry;)q + h.c.
/]
;
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Quarks in the SM: SU(2), x U(1)y Symmetries and Quantum Numbers

Quark Mixing and CKM Matrix

Quark Mass Matrices

@ Use the projections

1 1 0 00
Pi:EiT;;,F; (0 O)Or<0 1)

@ Up quark Yukawa couplings:
Lihass =— > QiH(yid; + yj)P+g + h.c.
if
@ Down quark Yukawa couplings:
Less=— Y _ QiH(yid; — yj)P-g;+ h.c.
i
@ — mass terms, once Regpy — v
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Quarks in the SM: SU(2); x U(1)y

Symmetries and Quantum Numbers
Quark Mixing and CKM Matrix

@ More compact notation

Ui/R di/r
Uyr= | Cuyr Diyp= | Suyr
fL/R bR

@ Mass Term for Up-type quarks
Cumass = -V Z/_{L YUUR + h.c.

with YY = (y + y')
@ Mass Term for down-type quarks

d 5. yd
Emass =—-v D YDg+ h.c.
with Y9 = (y — ')



Quarks in the SM: SU(2); x U(1)y

Symmetries and Quantum Numbers
Quark Mixing and CKM Matrix

@ Mass matrices:
Mu — v Yu Md — v Yd

@ In general non-diagonal: Diagonalization by a
bi-unitary transformation:

@ New basis for the quark fields
ﬁynass = _Z/_{LUU’TMZ,'ag W"Ugr + h.c.

and
L5ss = —DL UM MG, WDg + h.c.
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Quarks in the SM: SU(2), x U(1)y Symmetries and Quantum Numbers

Quark Mixing and CKM Matrix

Quark Mixing: The CKM Matrix

@ Effect of the basis transformation:

e Mass matrices become diagonal

e Interaction with Re ¢ (= Physical Higgs Boson)
becomes diagonal !

e Interaction with Im ¢q (= Z) becomes diagonal !

Lreg, = —Regold Y'Ur+DLYDg
Lingy, = —ImgolUdY'Ur — D Y'Dp]

@ NO FLAVOUR CHANGING NEUTRAL CURRENTS
(at tree level in the Standard Model)

@ — GIM Mechanism
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Quarks in the SM: SU(2); x U(1)y

Symmetries and Quantum Numbers
Quark Mixing and CKM Matrix

@ Effect on the charged current ONLY:
Interaction with ¢_:

Z C_?i(y/'5;j + y,-/j)(b_T_ P.qgi+ h.c.

if
=D YUUR¢_ + h.c.
= D U (UTUY) YW lRe- + hec.

@ In the charged currents flavour mixing occurs!

@ Parametrized through the
Cabbibo-Kobayashi-Maskawa Matrix:

Vern = U9 UM
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Quarks in the SM: SU(2), x U(1)y Symmetries and Quantum Numbers

Quark Mixing and CKM Matrix

Properties of the CKM Matrix

@ Veku is unitary (by our construction)
Number of parameters for n families
e Unitary n x n matrix: n® real parameters

e Freedom to rephase the 2n quark fields:
2n — 1 relative phases

n? —2n+1 = (n— 1)? real parameters
* (n—1)(n—2)/2 are phases
* n(n—1)/2 are angles
@ Phases are sources of CP violation
@ n = 2: One angle, no phase — no CP violation
@ n= 3: Three angles, one phase
@ n = 4: Six angles, three phases
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Quarks in the SM: SU(2), x U(1)y Symmetries and Quantum Numbers
Quark Mixing and CKM Matrix

CKM Basics

@ Three Euler angles 6;

Ci2 s;2 0 Cy3 0 sq3 1 0 0
Ug=| —S2 ¢c2 0 |, Us= 0 10 » U= 8 C3 523
0 0

1 —s13 0 c3

@ Single phase o: uéz{é - }

0 0 e 3

@ PDG CKM Parametrization:

Ve = UsgU] Uy Us Usz

@ Large Phasesin V,;, = |V,,|e" = 537 and
Via = | Vig| €
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Quarks in the SM: SU(2), x U(1)y Symmetries and Quantum Numbers

Quark Mixing and CKM Matrix

CKM Unitarity Relations

Vud Vus Vub
VCK M = Vcd Vcs Vcb
Vie Vis Vi

e Off diagonal zeros of Vi, Vexw = 1 = Ve Vi,

o ViyVerm=1:S ViV + Vo Vi + Vi Vs = 0
VisVig+ VesVig+ Vis Vi =0
ViaVig + Vs Vis + Vi Vi, = 0

("] VCKM VgKM =1: Vud ng + Vus V:s + Vub V:b =0
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Quarks in the SM: SU(2), x U(1)y Symmetries and Quantum Numbers

Quark Mixing and CKM Matrix

Wolfenstein Parametrization of CKM

@ Diagonal CKM matrix elements are almost unity
@ CKM matrix elements decrease as we move off the

diagonal
@ Wolfenstein Parametrization:
1-22/2 A NA(p — in)
Veku = -\ 1-)2/2 A2A
MNAA —p—in) —X3A 1

@ Expansionin A ~ 0.22 up to \®
@ A, p, n of order unity
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Quarks in the SM: SU(2), x U(1)y Symmetries and Quantum Numbers

Quark Mixing and CKM Matrix

Unitarity Triangle(s)

@ The unitarity relations:
Sum of three complex numbers = 0

@ Triangles in the complex plane
@ Only two out of the six unitarity relations involve
terms of the same order in A:

VLTO’ th + VJS VfS + V;b th — O

@ Both correspond to
AN (p+in—1+1—p—in)=0

@ Thisis THE unitarity triangle ...



Quarks in the SM: SU(2); x U(1)y

Symmetries and Quantum Numbers
Quark Mixing and CKM Matrix

p+in
VA Vi
VaVud / o A
VXV, « us 't/ oy
ebVed, Vi Vad vy
V*i‘/d udVtd
cb 7 c VJSVY,S
oy
Y B8 SR ~y /
> e +—» Re
1 1

@ Definition of the CKM angles «, 5 and v
@ To leading order Wolfenstein:
Vib = |Vinle™  Vip = |Vple™”

all other CKM matrix elements are real.
@ O+ is order \°
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Quarks in the SM: SU(2); x U(1)y

Symmetries and Quantum Numbers
Quark Mixing and CKM Matrix

@ Aerea of the Triangle(s): Measure of CP Violation
@ Invariant measure of CP violation:

* 2 .
ImA = ImVyy Vtt)’ Vi Vub = C12512C13513523C23 SIN 013

@ Maximal possible value 8. = ﬁg ~ 0.1

@ CP Violation is a small effect:
Measured value 0., ~ 0.0001

@ CP Violation vanishes in case of degeneracies: (arskg)

J  =Det([M,, My])
= 2imA(my, — mg)(my, — mg)(me — my)
X (Mg — ms)(mg — mp)(Ms — M)
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Assignement of Quantum Numbers
Leptons In the Standard Model See Saw Mechanism
PMNS Matrix

Leptons in the Standard Model

@ If the neutrinos are massless:
e Only left handed neutrinos couple
e Right handed neutrinos do not have any
SU(2). x U(1)y quantum numbers
e No mixing in the lepton sector
@ Recent evidence for neutrino mixing:
e Right handed components couple through the mass
term
e Mixing in the Lepton Sector

@ |t could be just a copy of the quark sector, but it may
be different due to the properties of the right-handed
neutrino
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Assignement of Quantum Numbers
Leptons In the Standard Model See Saw Mechanism
PMNS Matrix

Multiplets and Quantum Numbers

@ Left Handed Leptons: SU(2), Doublets

L: Ve, L L: VM,L)L:(VT,L>
1 (GL) 2 (,UL ° TL

@ Right Handed Leptons: SU(2)z Doublets
14 14 1Z
E — e,R £ — ,LL,H g ( T,R)
() e () o= (%

@ Charge and Hypercharge
1 1
Y = T3_R+§(B—L) =Tsr— 5 g=Ts.+Y
@ Y (and q) project the lower component: Right handed
Neutrinos: No charge, no Hypercharge
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Assignement of Quantum Numbers
Leptons In the Standard Model See Saw Mechanism
PMNS Matrix

Majorana Fermions

@ A “neutral” fermion can have a Majorana mass
@ Charged fermions < complex scalar fields
@ Majorana fermion: “Real (= neutral) fermion”
@ Definition of “complex conjugation” in this case:
Charge Conjugation:
- . 0 —io
c __ T _ _ 2
Y=yt =C) C=ipyp= ( iy 0 )

@ Properties of C

-C=Cc"'=C"=C

@ Majorana fermion: Vwiajorana = ' fyajorana
(Just as ¢* = ¢ for a real scalar field)
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Assignement of Quantum Numbers
Leptons In the Standard Model See Saw Mechanism
PMNS Matrix

Majorana Mass Terms

@ Mass term for a Majorana fermion: The charge
conjugate of a right handed fermion is left handed.
@ Possible mass term

1
Lym = _EM(DR(V,E{)L + hC)

@ Only for fields without U(1) quantum numbers
@ In the SM: only for the right handed neutrinos !
@ Remarks:
e The Majorana mass of the right handed neutrinos is
NOT due to the Higgs mechanism.
e Thus this majorana mass can be “large”
e Natural explanation of the small neutrino masses:
see-saw mechanism
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Assignement of Quantum Numbers
Leptons In the Standard Model See Saw Mechanism
PMNS Matrix

See Saw Mechanism

@ Simplification: One family: v, and vg
@ Total Mass term: Dirac and Majorana mass
Lmass = _m(ﬂL’/H + DRVL)

—;M(V,Z;CVR + ﬂF;Cﬂ;—)

@ We use

(vg) (V[)r = LR

and the properties of the C matrix ...

s =5 (08 (1 11 ) (YD) e
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Assignement of Qmmum Numbers

Leptons In the Standard Model

@ Diagonalization of the mass matrix:
— Majorana mass eigenstates of the Neutrinos
For M > m we get

m ~ — mgﬁM
M

@ One very heavy, practically right handed neutrino
@ One very light, practically left handed neutrino

@ At energies small compared to M:
Majorana mass term for the left handed neutrino

1 mP
Lomass = _2 v (VL Cv. + 1. Cr )

@ Majorana mass is small if M > m
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Assignement of Quantum Numbers
Leptons In the Standard Model See Saw Mechanism
PMNS Matrix

Right handed neutrinos in the Standard Model

@ In case of three families: Neutrino Mixing
@ Compact notation for the Leptons:

Ve /R eL/R
Nyr=| Vuur Eyr=| MR
VrL/R TL/R

@ Dirac masses are generated by the Higgs
mechanism: (as for the quarks)

‘CgM — _NLmNNR + hC
LEM = —ngEg,q + h.c.

@ m": Dirac mass matrix for the neutrinos
@ mf: (Dirac) mass matrix for e, u, 7
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Assignement of Quantum Numbers
Leptons In the Standard Model See Saw Mechanism

PMNS Matrix

@ Right handed neutrinos — Majorana mass term:
1 _ _

@ M: (Symmetric) Majorana Mass Matrix
@ This term is perfectly SU(2), ® U(1) invariant
@ Implementation of the see saw mechanism:
Assume that all Eigenvalues of M are large
@ Effective Theory at low energies:
Only light, practically left handed neutrinos
@ Effect of right handed neutrino:
Majorana mass term for the light neutrinos
1

Lmass = ) (NLTrnT/\/F1 mCN, + NLITIT/\/F1 mCNLT)
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Assignement of Quantum Numbers
Leptons In the Standard Model See Saw Mechanism
PMNS Matrix

Lepton Mixing: PMNS Matrix

@ Diagonalization of the Mass matrices:
e Charged leptons:

mf = U'm§,,W
e Neutrinos: “Orthogonal” transformation:
m"M~'m = O my,, O with OTO = 1

@ Again no Effect on neutral currents
@ Charged Currents: Interaction with ¢, :

1
;NLmE&qqm_ + h.c.
1

= V/\TLOT(O*UT)m(’;:,.é,gWS,qqs+ + h.c.
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Assignement of Quantum Numbers
Leptons In the Standard Model See Saw Mechanism

PMNS Matrix

@ A Mixing Matrix occurs:
Veuns = O*U!

Pontecorvo Maki Nakagawa Sakata Matrix
@ Vpyns is unitary like the CKM Matrix

@ Left handed neutrinos are Majorana: No freedom to
rephase these fields!

e For n families: n? Parameters

Only n Relative phases free

— n(n— 1) Parameters

n(n—1)/2 are angles

n(n—1)/2 are phases: More sources for CP violation
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Assignement of Quantum Numbers
Leptons In the Standard Model See Saw Mechanism

PMNS Matrix

@ Almost like CKM: Three Euler angles 6;

Ci2 s;2 0 Ci3 0 sy3 1 0 0
Uiz = *312 c2 0 , U= 0 1 0 y Uy = g C3 S

o 1 —s3 0 o3 —S23  Co3

@ A Dirac Phase § and two Majorana Phases «4 and a»
1 0 0 1 0 0
Us = [ 0 1 0 } Ua = [ 0 el 0 }
0 0 e 13 0 0 e—icn

@ PMNS Parametrization: Veyns = Uss Ul UssUsUsa U,
@ Oy3 ~ 45° is “maximal” (atmospheric v’s)

@ ©43 ~ 0is small (v's from reaktors)

@ sin©y3 ~ 1/v/3 s large (solar v’s)
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Assignement of Quantum Numbers
Leptons In the Standard Model See Saw Mechanism

PMNS Matrix

Maltoni et al ‘04

parameter best fit 2o kel o
Amd, [107%eV?] 6.9 6.0-8.4 5.4-9.5 2.1-28
Am3, [10- 3%V 2.6 1.8-3.3 1.4-3.7 0.77-4.8
sin’ 15 0.30 0.25-0.36 0.23-0.39 0.17-0.48
sin® 0.52 0.36-0.67 | 0.31-0.72 0.22-0.81
sin’ 13 0.006 < 0.035 < 0.054 <0.11
Ci2  Si2 0 % \/g 0
Vemns ~ _% % - % ~ | = % % — %
_sz e _ /1 1/ 1
V2. V2 2 Vs V3 “V2

@ No Hierarchy !
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Assignement of Quantum Numbers
Leptons In the Standard Model See Saw Mechanism
PMNS Matrix

Consequences of Lepton Mixing

@ FCNC Processes in the leptonic Sector:

Ty u— ey T — eeeetc.
Ur = VeY  Vr — Ve MIXiNG

@ Lepton Number Violation:
Right handed Neutrinos are Majorana fermions:
No conserved quantum number corresponding to the
rephasing of the right handed neutrino fields
Lepton number violation could feed via conserved
B — L into Baryon number violation
Relation to the Baryon Asymmetry of the Universe ?
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Peculiarities of SM CP / Flavour
Peculiarities of Flavour in the Standard Model

Peculiarities of SM Flavour Mixing

@ Hierarchical structure of the CKM matrix

@ Quark Mass spectrum ist widely spread
my ~ 10 MeV to m; ~ 170 GeV

@ PMNS Matrix for lepton flavour mixing is not
hierarchical

@ Only the charged lepton masses are hierarchical
me ~ 0.5 MeV to m, ~ 1772 MeV

@ Up-type leptons ~ Neutrinos have very small masses

@ (Enormous) Suppression of Flavour Changing
Neutral Currents:
b—s,c—u T, pu— e v — v
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Peculiarities of SM CP / Flavour

Peculiarities of Flavour in the Standard Model

Peculiarities of SM CP Violation

@ Strong CP remains mysterious
@ Flavour diagonal CP Violation is well hidden:
e.g electric dipole moment of the neutron:

At least three loops (shavain)
as G2 m?
de ~ e—
y - (1672)2 M2
10*2ecm with u ~ 0.3GeV
Op < 3.0x10%®ecm

ImA 13

2

Flavour Physics, Lecture 1
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Peculiarities of SM CP / Flavour
Peculiarities of Flavour in the Standard Model

@ Pattern of mixing and mixing induced CP violation
determined by GIM: Tiny effects in the up quark
sector

e AC = 2is very small
e Mixing with third generation is small:
charm physics basically “two family”
e — CP violation in charm is small in the SM
@ Fully consistent with particle physics observations

@ ... but inconsistent with matter-antimatter asymmetry
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Peculiarities of SM CP / Flavour
Peculiarities of Flavour in the Standard Model

??? Many Open Questions 7?7

@ Our Understanding of Flavour is unsatisfactory:
e 22 (out of 27) free Parameters of the SM originate
from the Yukawa Sector (including Lepton Mixing)
e Why is the CKM Matrix hierarchical?
e Why is CKM so different from the PMNS?
e Why are the quark masses (except the top mass) so
small compared with the electroweak VEV?
e Why do we have three families?
@ Why is CP Violation in Flavour-diagonal Processes
not observed? (e.g. z.B. electric dipolmoments of
electron and neutron)

@ Where is the CP violation needed to explain the
matter-antimatter asymmetry of the Universe?

Thomas Mannel, University of Siegen Flavour Physics, Lecture 1
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What is the Problem?

@ Weak interaction: Transitions between quarks
@ Observations: Transitions between Hadrons
@ We have to deal with nonperturbative QCD

@ Extraction of fundamental parameters (CKM
Elements, CP Phases) requires precise predictions,
including error estimates

@ — Simple models are out ...

@ Effective Field Theory methods
@ QCD Sum Rules

@ Lattice QCD

Thomas Mannel, University of Siegen Flavour Physics, Lecture 2
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Effective Field Theories EFT in a nutshell
Effective Weak Hamiltonian
Introduction to Renormalization Group

Effective Field Theories

@ Weak decays:
Very different mass scales are involved:
@ Aqcp ~ 200 MeV: Scale of strong interactions
@ m¢ ~ 1.5 GeV: Charm Quark Mass
e mp ~ 4.5 GeV: Bottom Quark Mass
e m; ~ 175 GeV and M,y ~ 81 GeV:
Top Quark Mass and Weak Boson Mass
@ Apnp Scale of “new physics”
@ At low scales the high mass particles / high energy
degrees of freedom are irrelevant.

@ Construct an “effective field theory” where the
massive / energetic degrees of freedom are removed
(“integrated out”)

Thomas Mannel, University of Siegen Flavour Physics, Lecture 2



Effective Field Theories EFT in a nutshell
Effective Weak Hamiltonian
Introduction to Renormalization Group

Integrating out heavy degrees of freedom

@ ¢: light fields, ®: heavy fields with mass A

@ Generating functional as a functional integral
Integration over the heavy degrees of freedom

Z[1

[ 1ddliaolexp ( [ iz, +j¢1)
/ [d¢] exp < / d* X [Ler(0) + qu]) with

exp ( / o x ceff(gb)) _ / [dP] exp ( / dix L(o, ¢))

Thomas Mannel, University of Siegen Flavour Physics, Lecture 2



Effective Field Theories EFT in a nutshell
Effective Weak Hamiltonian

Introduction to Renormalization Group

For length scales x > 1/A: local effective Lagrangian

Technically: (Operator Product) Expansion in inverse
powers of A

La(6) = £8(0) + 1 L5(6) + 75LE(0) +

L. is in general non-renormalizable, but ...

ngf) is the renormalizable piece

For a fixed order in 1/A: Only a finite number of
insertions of £ is needed!

— can be renormalized

Renormalizability is not an issue here

Thomas Mannel, University of Siegen Flavour Physics, Lecture 2



Effective Field Theories EFT in a nutshell
Effective Weak Hamiltonian

Introduction to Renormalization Group

_f = My, m; VWeak Gauge Bosons.Top Quark

- M= My Mass of the b Quark

o= M Mass of the charm quark

T J7i— AQ(‘D Hadronic Scale @

Thomas Mannel, University of Siegen Flavour Physics, Lecture 2



Effective Field Theories EFT in a nutshell
Effective Weak Hamiltonian
Introduction to Renormalization Group

Effective Weak Hamiltonian

@ Start out from the Standard Model
@ W+, Z° top: much heavier than any hadron mass
@ “integrate out” these particles at the scale ;1 ~ Mijagron

@ W has zero range in this limit:
QITW; (X)W (0)NI0) = Guw iz 0*(x = ¥)
@ Effective Interaction (Fermi Coupllng)

Heir = \fgg—;sv Vaal@7u(1=75) a7y, (1-75)] = Vq /q Jyuhad /1ep

Thomas Mannel, University of Siegen Flavour Physics, Lecture 2



Effective Field Theories EFT in a nutshell
Effective Weak Hamiltonian
Introduction to Renormalization Group

Decays of Hadrons

@ Leptonic and semi-leptonic decays

4Gr . ., (1-
T;Vq’q[q 7u( 75)

@ Hadronic decays

4G (1 — )
Herr = \/EF VoaVoo 10—

(1 - 75)61

Her = o] | Za 5

(e TAe]

@ Rare (FCNC) Decays: Loop Corrections
(QCD and electroweak)

Thomas Mannel, University of Siegen Flavour Physics, Lecture 2



Effective Field Theories EFT in a nutshell
Effective Weak Hamiltonian
Introduction to Renormalization Group

@ Example: b — sy
A(b — s7) = Vip Vs f(my) + Vep Vi f(mMe) + Vi Vief(my)
@ In case of degenarate masses up-type masses:

A(b — s7) = f(m) [Vup Vi + Voo Vi + Vio Vis] = 0

Thomas Mannel, University of Siegen Flavour Physics, Lecture 2



Effective Field Theories EFT in a nutshell
Effective Weak Hamiltonian
Introduction to Renormalization Group

Renormalization Group Running

@ H. is defined at the scale A, where we integrated out
the particles with mass A: General Structure

4G
Hesr = FACKM Z Ci(A

@ Ok(N): The matrix elements of O have to be
evaluated (“normalized”) at the scale A.

° Ck(A): Short distance contribution, contains the
information about scales p > A

@ Matrixelements of O(A): Long Distance Contribution,
contains the information about scales 1 < A

Thomas Mannel, University of Siegen Flavour Physics, Lecture 2



Effective Field Theories EFT in a nutshell
Effective Weak Hamiltonian

Introduction to Renormalization Group

@ We could as well imagine a situation with a different
definition of “long” and “short” distances, defined by a
scale p, in which case

4Gr
V2

@ Key Observation: The matrix elements of H.; are
physical Quantities, thus cannot depend on the
arbitrary choice of u

Heff =

ACKM Z Ck (N 1) Ok(12)

d
0= /lfd—MHeff

@ compute this ....

Thomas Mannel, University of Siegen Flavour Physics, Lecture 2



Effective Field Theories EFT in a nutshell
Effective Weak Hamiltonian

Introduction to Renormalization Group

0= Z( GV O1) + i) (1 010

@ Operator Mixing: Change in scale can turns the
operator O; into a linear combination of operators (of
the same dimension)

) =Y 7i(m)Oi(1)
]

and so

> (|owegs + 20| S} 00 =0



Effective Field Theories EFT in a nutshell
Effective Weak Hamiltonian

Introduction to Renormalization Group

@ Assume: The operators O, from a basis, then
d , ;
> Syt i (1] GA k) =
i
@ QCD: Coupling constant as depends on p: -function

g s) = Bas(s)

@ C; depend also on «os

d 0 0
" (“au A( S)aa3>
@ In an appropriate scheme y; depend on y only trough as:
(1) = vilas(p))



Effective Field Theories EFT in a nutshell
Effective Weak Hamiltonian

Introduction to Renormalization Group

@ Renormalization Group Equation (RGE) for the
coefficients

5 [ (1 + Blasho ) (0] G = 0

i

@ This is a system of linear differential equations:

— Once the initial conditions are known, the solution
is in general unique

@ RGE Running: Use the RGE to relate the coefficients
at different scales

Thomas Mannel, University of Siegen Flavour Physics, Lecture 2



Effective Field Theories EFT in a nutshell
Effective Weak Hamiltonian

Introduction to Renormalization Group

@ The coefficients are at i = A (at the “matching scale”)
n
C,'(/\/,u =1 R as) = ; a,(.”) (%) perturbative calculation

@ Perturbative calculation of the RG functions g and ~;

las) = s 30 (52)" o) =07 (52)"
n=0

@ RG functions can be calculated from loop diagrams:

BO) — _2(33 —2n¢) ~y; depends on the set of O;

Thomas Mannel, University of Siegen Flavour Physics, Lecture 2



Effective Field Theories EFT in a nutshell
Effective Weak Hamiltonian

Introduction to Renormalization Group

@ Structure of the perturbative expansion of the
coefficient at some other scale

Ci(N p, as) =
B°
o ()0t ()
+ bR (2‘7) I22+b,-21 (Z‘—;) In= 4 B (%)
o (e e ) e ()

Thomas Mannel, University of Siegen Flavour Physics, Lecture 2



Effective Field Theories EFT in a nutshell
Effective Weak Hamiltonian

Introduction to Renormalization Group

@ LLA (Leading Log Approximation):
Resummation of the b terms

Ci(Np, as) = Z o (32) 'nng
n=0

— leading terms in the expansion of the RG functions
@ NLLA (Next-to-leading log approximation):

ot =3 oot (32)] (52) o

n=0

— next-to-leading terms of the RG functions

Thomas Mannel, University of Siegen Flavour Physics, Lecture 2



Effective Field Theories EFT in a nutshell
Effective Weak Hamiltonian

Introduction to Renormalization Group

@ Typical Proceedure:

e “Matching” at the scale . = My,
e “Running” to a scale of the order . = my
e — includes operator mixing

@ Resummation of the large logs In(M3,/m2)

e “Matching” at the scale = my
e “Running” to the scale m.

@ Resummation of the “large” logs In(m2/m?)
° ..
@ Untli as(v) becomes too large ...

Thomas Mannel, University of Siegen Flavour Physics, Lecture 2



Effective Field Theories EFT in a nutshell
Effective Weak Hamiltonian
Introduction to Renormalization Group

H.¢ for b decays at low scales

o Effective interaction: Hur = % Ackm Y- Ci(A)Ok(A)
@ “Tree” Operators"

O1 = (CLimuse)) (dujruuLy)

Oz = (CLivusLi) (dujvuue)) -

Thomas Mannel, University of Siegen

Flavour Physics, Lecture 2




Effective Field Theories EFT in a nutshell
Effective Weak Hamiltonian

Introduction to Renormalization Group

@ If two flavours are equal: QCD Penguin Operators

O3 = (Bumbl) D, (@Gui"au)

g=u,d,s,c,b

Os = (GGuimbr) D (GL"au) .

q:u7d7s7 C7b

Os = (b)) . (Gr"GRy)

q=u,d,s,c,b

Os = (Suib) . (Gr"Gri) -

q=u,d,s,c,b

Thomas Mannel, University of Siegen Flavour Physics, Lecture 2



Effective Field Theories EFT in a nutshell
Effective Weak Hamiltonian

Introduction to Renormalization Group

@ Electroweak Penguins:

Replace the Gluon by a Z or Photon: P7 - - - Py
@ Rare (FCNC) Processes: )
—-—’\/\/\f\/\;—-f—

W, e, I

b W £
e _ v
07 - me(SL,ao_uubR,a)
O = #mb(EL,aTsﬁawbR@)GaW
1 _
Og = 5(Su7:bL)(67"C)
1 _
O = E(SL%bL)(ﬁ’V“’Ysg)

Thomas Mannel, University of Siegen Flavour Physics, Lecture 2



Effective Field Theories EFT in a nutshell
Effective Weak Hamiltonian

Introduction to Renormalization Group

@ Coefficients of the Operators (One Loop)

Ci(p) p©=100GeV 1 =50GeV p=25GeV

Ci 0.182 0.275 0.40
Co —1.074 —1.121 —1.193
Cs —0.008 —0.013 —0.019
C4 0.019 0.028 0.040
Cs —0.006 —0.008 —0.011
Cs 0.022 0.035 0.055

Ci(p) nw=25GeV pu=5GeV p=10GeV

Cst ~0.334  —0.299 —0.268
ct ~0.157  —0.143 ~0.131
2n Cq 1.933 1.788 1.494

Thomas Mannel, University of Siegen Flavour Physics, Lecture 2



Heavy Quark Effective Theory
Heavy Mass Limit Heavy Quark Expansion
Soft Collinear Effective Theory

Heavy Quark Limit

Isgur, Wise, Voloshin, Shifman, Georgi, Grinstein, ...

@ 1/mq Expansion: Substantial Theoretical Progress!
@ Static Limit: m,, m; — oo with fixed (four)velocity
w=P2  a-bc
maq
@ In this limit we have

MHadron = Mq

VHadron = Va
PHadron = Pa }

@ For mq — oo the heavy quark does not feel any recoil
from the light quarks and gluons (Cannon Ball)

@ This is like the H-atom in Quantum Mechanics I!

Thomas Mannel, University of Siegen Flavour Physics, Lecture 2



Heavy Quark Effective Theory
Heavy Mass Limit Heavy Quark Expansion
Soft Collinear Effective Theory

Heavy Quark Symmetries

@ The interaction of gluons is identical for all quarks
@ Flavour enters QCD only through the mass terms

e m — 0: (Chiral) Flavour Symmetry (Isospin)
@ m — oo Heavy Flavour Symmetry
e Consider b and ¢ heavy: Heavy Flavour SU(2)

@ Coupling of the heavy quark spin to gluons:

mao—o0

9 A0 B
Hin = 5,-Q(7 - B)Q 0

e Spin Rotations become a symmetry
e Heavy Quark Spin Symmetry: SU(2) Rotations

@ Spin Flavour Symmetry Multiplets



Heavy Quark Effective Theory
Heavy Mass Limit Heavy Quark Expansion
Soft Collinear Effective Theory

Mesonic Ground States

Bottom:
|(bU)y=0) = |B7) (bU)y=1) = [B")
(bd)s—0) = [B') (b)) = [B")
(68),0) = IBy) (68),=1) = [BY)
Charm:
(cT)s0) = |D°) (cT)s—s) = D)
(cd)s0) = D) (cd)sr) = D)
(€8)u=0) = |D5) (c8)u-1) = |D3)

Thomas Mannel, University of Siegen Flavour Physics, Lecture 2



Heavy Quark Effective Theory
Heavy Mass Limit Heavy Quark Expansion
Soft Collinear Effective Theory

Baryonic Ground States

=[Xq)

)
[(00)1 QL) = [£2)

Thomas Mannel, University of Siegen Flavour Physics, Lecture 2



Heavy Quark Effective Theory
Heavy Mass Limit Heavy Quark Expansion
Soft Collinear Effective Theory

Wigner Eckart Theorem for HQS

@ HQS imply a “Wigner Eckart Theorem”

(HO ()| Q,rQy [HH (W) = Cr(v,V)¢(v - V)

with H®)(v) = D™)(v) or B¥)(v)

e Cr(v,Vv’): Computable Clebsh Gordan Coefficient

e {(v-V'): Reduced Matrix Element

e &(v - V/): universal non-perturbative Form Faktor:
Isgur Wise Funktion

e Normalization of ¢ at v = v':

Thomas Mannel, University of Siegen Flavour Physics, Lecture 2



Heavy Quark Effective Theory
Heavy Mass Limit Heavy Quark Expansion
Soft Collinear Effective Theory

Heavy Quark Eftective Theory

@ The heavy mass limit can be formulated as an
effective field theory

@ Expansion in inverse powers of mq
@ Define the static field h, for the velocity v

hy(x )—e’"’o” (1+¥)b(x)  po=mqv+k
@ HQET Lagrangian
L = h,(iv-D)h, + 1 h,(iD)?h
2mq

@ Dim-4 Term: Feynman rules, loops, renormalization...



Heavy Quark Effective Theory
Heavy Mass Limit Heavy Quark Expansion
Soft Collinear Effective Theory

Application: Determination of V., from B — D(*)¢5,

@ Kinematic variable for a heavy quark: Four Velovity v
o Differential Rates

ar . G2
E(B — D'y = K;&J Vcb|2m%*(w2 — 1)1/2P(w)(]:(w))2

dar 2

%(B — Dtiy) = W;' Veo|?(Mg + mp)2mp(w? — 1)¥3(G(w))?

@ withw = vv and
@ P(w): Calculable Phase space factor
@ F and G: Form Factors

Thomas Mannel, University of Siegen Flavour Physics, Lecture 2



Heavy Quark Effective Theory
Heavy Mass Limit Heavy Quark Expansion
Soft Collinear Effective Theory

Heavy Quark Symmetries

@ Normalization of the Form Factors is known at
vv' = 1: (both initial and final meson at rest)

@ Corrections can be calculated / estimated
F(w) = moeona 1+ +-] (w—1)p2+O((w—1)?)
mg—m
G(1) = mngeonv [1 +0 (M)}

Mg + Mp
, 1 1 1
@ Parameter of HQS breaking: — = — — —
oo Mo Mp

@ 1, =0.960 £ 0.007, ny = 1.022 + 0.004,
61/H2 = —(8 + 4)%, TIQED = 1.007

Thomas Mannel, University of Siegen Flavour Physics, Lecture 2



Heavy Quark Effective Theory
Heavy Mass Limit Heavy Quark Expansion
Soft Collinear Effective Theory

B — D*) Form Factors

@ Lattice Calculations of the deviation from unity

F(1)=0.903 £ 0.13
G(1) = 1.033 + 0.018 + 0.0095

A. Kronfeld et al.

@ Zero Recoil Sum Rules

F(1) = 0.86 = 0.04
G(1) = 1.04 £ 0.02

P. Gambino et al.

Thomas Mannel, University of Siegen Flavour Physics, Lecture 2



Heavy Quark Effective Theory
Heavy Mass Limit Heavy Quark Expansion
Soft Collinear Effective Theory

ALEPH (excl)
327+ 1.8+ 1.3 l

CLEO
417+ 1.3+ 1.8 o

37.0% 16+ 15 "

OPAL (partial reco)

—
@
=]
—
—
8
OPAL (excl) >
X
377+ 12+ 24 - = DELPHI
— oxcl
DELPHI (partial reco) & (excl.)
360+ 14+ 23 R G DELPHI
BELLE (excl) (|)‘Jr‘l. reco.)
345+ 19+ 1.7 O g gl;;\tchco)
DELPHI (excl) AVERAGE
368+ 1.8+ 1.9 " 35
BABAR (excl) ALEPH
343+ 03+ 11 —0—)

Average
359+ 06 54l

HFAG

Alfdof =3781n7 (CL4 3%) | | | | 30

25 30 35 40 45,
F(1) X IV, | [10°] P

as Mannel, University of Siegen Flavour Physics, Lecture 2



Heavy Quark Effective Theory
Heavy Mass Limit Heavy Quark Expansion
Soft Collinear Effective Theory

ALEPH
38.85 + 11.80 £6.20
CLEO
44.77 £5.90 +3.45 == el
BELLE
41.11 £4.40 £5.15 —_——
Average
4230 £4.50 =
HFAG HFAG
2 % | ;f/dof:ﬂz()/‘-'l | | ‘
¥ /dof =0.26/ 4 (CL = 99 % 1
e | ‘ 0 05 1 15 2
10 20 30 40 50 ’ ’ ,
G(1) XIV,| [107] P

el, University of Siegen Flavour Physics, Lecture 2



Heavy Quark Effective Theory
Heavy Mass Limit Heavy Quark Expansion
Soft Collinear Effective Theory

Inclusive Decays: Heavy Quark Expansion

Operator Product Expansion = Heavy Quark Expansion

(Chay, Georgi, Bigi, Shifman, Uraltsev, Vainstain, Manohar. Wise, Neubert, M,...)

o Z (27)*5*(Pg — Px)|(X[Her| B(v))

/d4 V)| Her(X)H eff( )IB(v))
P / d*X (B(V)| T{Hen(XYHL4(0)}|B(v))
—21m / d*x €™V (B(v)| T{Hen(X)HL,(0)}| B(v))

@ Last step: ppb = mpv + K,
Expansion in the residual momentum k

Thomas Mannel, University of Siegen Flavour Physics, Lecture 2



Heavy Quark Effective Theory
Heavy Mass Limit Heavy Quark Expansion

Soft Collinear Effective Theory

@ Perform an OPE: my, is much larger than any scale
appearing in the matrix element

/d4xe_imbvxT{ﬁeff(x)ﬁsz(o)}

o0 1 n
= nz; (E) Cn+3(,u)0n+3

— The rate for B — X /v, can be written as
1 1 1
F=To+—TNi+—>Sla+—F5ls+--
maq m% mg

@ The I'; are power series in ag(mg):
— Perturbation theory!

Thomas Mannel, University of Siegen Flavour Physics, Lecture 2



Heavy Quark Effective Theory
Heavy Mass Limit Heavy Quark Expansion

Soft Collinear Effective Theory

@ [ is the decay of a free quark (“Parton Model”)
@ [; vanishes due to Heavy Quark Symmetries
@ [, is expressed in terms of two parameters

My = —(H(v)|Q(ID)2Qy|H(v))
My = (H(V)|Quo (ID")(ID") Q| H(V)

1, Kinetic energy and ng: Chromomagnetic moment
@ 3 two more parameters

2Muph = —(H(v)|Qu(iD,)(ivD)(iD*)Q,|H(v))
2Mupls = (H(v)|Quo,, (iD")(ivD)(ID")Qu H(V))

pp: Darwin Term and p;s: Chromomagnetic moment

Thomas Mannel, University of Siegen Flavour Physics, Lecture 2



Heavy Quark Effective Theory
Heavy Mass Limit Heavy Quark Expansion
Soft Collinear Effective Theory

NeW: 1/mg Contribution |_4 (Dassinger, Turczyk, M.)

@ Five new parameters:

E?):  Chromoelectric Field squared

B?):  Chromomagnetic Field squared

: Fourth power of the residual b quark momentum

. B)) : Mixed Chromomag. Mom. and res. Mom. sq.
- P)) : Mixed Chromomag. field and res. helicity

@ Some of these can be estimated in naive factorization

Thomas Mannel, University of Siegen Flavour Physics, Lecture 2



Heavy Quark Effective Theory
Heavy Mass Limit Heavy Quark Expansion
Soft Collinear Effective Theory

Spectra of Inclusive Decays

Wig) Wiq)

y

@ Endpoint region: p = m2/m2, y = 2E,/m,,

7 2+ (e fy)z {3‘413}]

Z ~O(1—y—
dy ©(1-y—p)
@ Reliable calculation in HQE possible for the moments
of the spectrum

Thomas Mannel, University of Siegen Flavour Physics, Lecture 2




Heavy Quark Effective Theory
Heavy Mass Limit Heavy Quark Expansion
Soft Collinear Effective Theory

Application: V¢, from b — c/v inclusive

@ Tree level terms up to and including 1/m; known

@ O(as) and full O(a?) for the partonic rate known

@ O(as) for the 12 /mz is known

@ QCD insprired modelling for the HQE matrix elements

@ New: Complete as/mz, including the pg terms
Alberti, Gambino, Nandi (arXiv:1311.7381)
ThM, Pivovarov, Rosenthal (arXiv:1405.5072,
arXiv:1506.08167)

@ This was the remaining parametrically largest
uncertainty

Thomas Mannel, University of Siegen Flavour Physics, Lecture 2



Heavy Quark Effective Theory
Heavy Mass Limit Heavy Quark Expansion

Soft Collinear Effective Theory

o Alberti et al.: Phys.Rev.Lett. 114 (2015) 6, 061802
and JHEP 1401 (2014) 147

e Calculation of the differential rate including the charm
mass
e partially numerical calculation
@ ThM, Pivovarov, Rosenthal:
Phys.Lett. B741 (2015) 290-294
e Fully analytic calculation
o limtm;—0
o Possibility to include m¢ in a Taylor series
@ Results do agree,
surprisingly steep m. dependence

Thomas Mannel, University of Siegen Flavour Physics, Lecture 2



Heavy Quark Effective Theory
Heavy Mass Limit Heavy Quark Expansion
Soft Collinear Effective Theory

Result for V,

@ Inclusive Decay (HQE / OPE)
VCb — 4221 :l: 078 (Gambino et al. 2015)

@ Exclusive decay (Lattice FF)

VCb — 3936 Zl: 078 (Fermilab/Milc 2015)

@ Exclusive decay (Zero Recoil Sum rule)

VCb — 41 4 Zl: 09 (Gambino et al. 2015)

Thomas Mannel, University of Siegen Flavour Physics, Lecture 2



Heavy Quark Effective Theory
Heavy Mass Limit Heavy Quark Expansion
Soft Collinear Effective Theory

Soﬂ Collinear Effective Theory

Problem: How to deal with “energetic” light degrees
of freedom = Endpoint regions of the spectra ?

More than two scales involved!
Inclusive Rates in the Endpoint become orchemski, sterman)

dl =HxJx S with * = Convolution

H: Hard Coefficient Function, Scales O(mj)

J: Jet Function, Scales O(y/mpAqcp)
S: Shape function, Scales O(Aqcp)

Thomas Mannel, University of Siegen Flavour Physics, Lecture 2



Heavy Quark Effective Theory
Heavy Mass Limit Heavy Quark Expansion
Soft Collinear Effective Theory

Basics of Soft Collinear Effective Theory

@ Heavy-to-light decays:
Kinematic Situations with energetic light quarks
hadronizing into jets or energetic light mesons
Prin: Momentum of a light final state meson
Piy ~ O(NgenMp) V- Pin ~ O(Mp)
@ Use light-cone vectors 2 =n> =0, n-n = 2:
1 1 _
Prin = 5( 5(’7 + 1)
@ Momentum of a light quark in such a meson:

n-pg)n and v =

1 _ _
Pright = 5[(” - Pright) + (7 Pright) N] + Pigne

Thomas Mannel, University of Siegen Flavour Physics, Lecture 2



Heavy Quark Effective Theory
Heavy Mass Limit Heavy Quark Expansion
Soft Collinear Effective Theory

SCET Power Counting

@ Define the parameter A\ = \/Aqcp/Mp

@ The light quark invariant mass (or virtuality) is
assumed to be

plzight = (n ) plight)(h : plight) + (plfght)z ~ )\thZ)

@ The components of the quark momentum have to
scale as

(N Pughe) ~ My (A~ Pughe) ~ A°Mp Pl ~ AMp

Thomas Mannel, University of Siegen Flavour Physics, Lecture 2



Heavy Quark Effective Theory
Heavy Mass Limit Heavy Quark Expansion
Soft Collinear Effective Theory

A brief IOO k at SC ET (Bauer, Stewart, Pirjol, Beneke, Feldmann ...)

@ QCD quark field g is split into a collinear component
¢ and a soft one with ¢ = 1/ /i, q

@ The Lagrangian Locp = q(iD)q is rewritten in terms
of the collinear field

m

1.
£ =3¢ (in-D)e Lo in. D+ ie

ip.g

@ Expansion according to the above power couning:
in+D - in-l—a + gn+Ac + gn+Aus = in+Dc + gn+Aus
@ Leading £ becomes non-local: Wilson lines

Thomas Mannel, University of Siegen Flavour Physics, Lecture 2



Heavy Quark Effective Theory
Heavy Mass Limit Heavy Quark Expansion
Soft Collinear Effective Theory

Practical Consequences of SCET

@ Similar to HQS: Relations between for factors at large
momentum transfer

(B(v)|brglm(p)) o ((vp), ¢/ (vip), ¢L(vp)

For energetic pion only three independent form
faCtOI’S (Charles et al.)

@ Correction can be calculated as in HQET

Thomas Mannel, University of Siegen Flavour Physics, Lecture 2



QCD Sum Rules

BaSIC Idea (Shifman, Vainshtein, Zakharaov, 1978)

@ Start from a suitably chosen correlation function, e.g.
T(¢) = [ d*xe (0T (0)/0)

@ This can be calculated perturbatively as g — —oc.
@ On the other hand, it has a dispersion relation

ds  p(s) . .
2\ __ A A
T(q) = / S Er— + possible subtractions

with p(s) ~ (0[j(x)j'(0)0) = Y (0lj(x)[n) (nlj'(0)0)

n

@ Estimates for (0|j(x)|n) from e.g. positivity statements

Thomas Mannel, University of Siegen Flavour Physics, Lecture 2



QCD Sum Rules

Application: Determination of V;, from exclusive b — uflv

O B — mly,, determination of | V| e

@ decay amplitude
parametrized by
hadronic form factors

w S

(n* (P)|T7ubl B (P + ) = 1, ()]

7 u
L determination [BaBar,Belle]
1) dBR(B° ~ n*lv) _ G} 31+ (2)[2
<E> ag? = 048 Prlle: (@) + o(m?)

0<q? < (mg—mg)?~26GeV?,

@ form factors accessible in lattice QCD at g* > 16 GeV?
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QCD Sum Rules

f. (g%) from QCD Sum Rul€es ez wossman .

@ Dispersion Relation and Light Cone Expansion
@ Study a Correlation Function

(P7 —I/d4x e’px< “(q )IT{U%b( x) mybirsd(0)}|0)

-".---_- e} ™ W T .-'| |
-\‘_\_._._ ! il {/ a,_i__ A -
! A \ \
N\ AN b \.
Y \ . ~—.
\ \\ --“'--.W ‘\ \‘\ 7 \ Fs
o Y,
T —~— Py AN \,a )"M"’
Im.

@ Yields an estimate for fzf, (g?)
@ Limited to small g2
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QCD Sum Rules

Results from LCSR

@ Uncertainties from

Higher Twists (> 4)

b quark mass and renormalization scale
Values of the condensates

Threshold and Borel parameters

Pion Distribution amplitude

f.(0) = 0.27 x
(1 (5%)ows & (3%)m, 0 = (3%)iaq) + (3%)sg m = (8%,

@ Extrapolation to g? # 0 by a pole model

Thomas Mannel, University of Siegen Flavour Physics, Lecture 2



QCD Sum Rules

Lattice QCD for Heavy to Light Form Factors

@ Results reliable for large g2
@ Unquenched results are available
@ Extrapolation to small g by a pole model eccievic, kaisaiov

I A R T R

Rate for g2 > 16 GeV?

|Vip|? x (1.81 £0.33) ps~"
i |Vip|? x (1.80 £ 0.48) ps™"

151~ | @ f(q") HPQCD
b | m f,)HPQcD
1| & f(q) Fermila/MILC
L |4 f)FemilabmiLc

(HPQCD / Fermilab MILC)

L L L L P T I O i S
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
c|2 in Gev?
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QCD Sum Rules

Status of Vp

@ From QCD LCSR: V,, = (3.32 £ 0.26) x 103
e PDG 2104:

o Inclusive (LC-OPE): V,p = (4.41 +0.25) x 1073
e Exclusive (Combined): V,, = (3.28 +0.29) x 1073

@ This is the famous tension between the Vs

Thomas Mannel, University of Siegen Flavour Physics, Lecture 2



QCD Sum Rules

The history of the UT since ~ 1993

@ Situation in 1993:
e HQET was still young (~ 3 years)
e Hadronic Matrix elements for
Amy ~ f3 were quite uncertain
e V,p/ Ve was known at the level of ~ 20%
e The top quark mass was still m; ~ (140 +40) GeV
e No CP violation has been observed except ex

@ The UT still could have been “flat”
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QCD Sum Rules

Unitarity triangle 1993: fg = 135 4+ 25 MeV

1 e —— B o

1]

0.9
0.8
0.7
0.6
0.5
0.4
c.3
0.2

0.1

4] I I N
-1 -0.B -0.6

(¢) = my = 180 GeV

||"'III'III|IIT||"”

|l|"llll‘llli

T

T[T
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QCD Sum Rules

Unitarity triangle 1993: fg = 200 4+ 30 MeV

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

(c) = m, = 180 GeV

| ALY LA LARLY LLALY LLALY LERLS LLLAS LELLE LLLL

- -
LT

ill|||r1l|||ll[1:||||11|||-1|[|||||1||||'|||t1:m._
-0.8 -0.6 -0.4 =02 0.2 0.4 0.6 0.8 1

I
- [T

Q
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QCD Sum Rules

2001: First observation of “Non-Kaon CPV”

fewd

VfVe
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QCD Sum Rules

Unitarity Triangle 2001

NVuVel

Thomas Mannel, University of Siegen

Flavour Physics, Lecture 2



QCD Sum Rules

Unitarity Triangle 2002

15 o
1 4
Amy
[ Am & Amy
05 9 i
g @ Some improvement of
o 8 P sin 2, Vub/ Vb through the Heavy
MV Quark Expansion
05 | 1 @ More data on
i ; Acp(B — J/VK)
15 i “P‘CP‘ZU“E [ PR S TSSO TS S
-1 -0.5 0 0.5 1 15 2

p

Thomas Mannel, University of Siegen Flavour Physics, Lecture 2



QCD Sum Rules

Unitarity Triangle 2003

18 [
1 |
Am,
[ Amg & Amy . . 2
osf 1 @ Slight improvement of f5Bg
[ e from lattice calculations
= o r Y B sin 2B(WA) .
v @ Still more data on
o . Acp(B — J/VKS)
[ EK @ Central value of Vi/ Ve
af A slightly moved
15 L. ‘LP‘ZOU‘B Ly 0 PN NS S T S L Y
-1 -0.5 0 0.5 1 15 2

P
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QCD Sum Rules

Unitarity Triangle 2004

@ More improvement of fZBg
from lattice calculations

@ Still more data on
Acp(B — J/VK)

@ First constraints on the
angle o from B — pp

Thomas Mannel, University of Siegen

Flavour Physics, Lecture 2



QCD Sum Rules

Unitarity Triangle 2005

15 —
[ | excluded area has CL >0.95 \ ‘?a \
L \c%\
[ \&.\ Amy
I Q
1 o) 4
. Ao\
sin 2B \;8«\
\ \ Am, & Am,
05 e ]
b S = A
(e
= 0 ¢
[ Voo Vepl \\
[ \ %
\
05 \\ 1
L \\\
3 i3
sol. w/ cos 2B <0
-1 (excl. at CL>095) |\ —
\ \
L fitter W\
L EPS 2005 \\ o\
[ B S MY )\ A
-1 -0.5 0 0.5 1 15 2

P

@ Still more data on
ACP(B — J/\UKS)

@ Exclusion of the “wrong
branch” of 3

@ Dramatic Improvement of
V,» from the HQE
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QCD Sum Rules

Unitarity Triangle 2006

e e
Cy &) i
r it Am, |
1: sin2p d?g\ Am, & Amy 1
™ ) 1 @ TEVATRON measurement
= o:SK 1 p 1 of Am
VYo 1 @ Tighter constraints on «
osE . 41 o First constraints on ~ from
L K 1 .
= 1 CPVinB— Kn
1 —
I SKY ) s,
P i P PO I DRSO R
1 -0.5 0 0.5 1 15 2

p
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QCD Sum Rules

Unitarity traingle 2007

RS o e e e e LAY LI L
[ excluded area has CL > 0.95 ) B
Eooy i K 1
L i 2 -
- % \ 7
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C § T 1
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QCD Sum Rules

Unitarity Triangle Now

1-5\\\\‘\\\\‘\\\\\\\\\\\\\\\\

excluded area has CL>0.95 |1

Y

%
%
%
kN
2
o
9

0.5

LI I/ /A BN
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-1.0 r €y
r fitter Yy ! sol. w/ cos 2 <0
FSummeria : (excl. at CL > 095) |

_15 7\ L1l ‘ I ‘ I ‘ | ‘ I | ‘ Lol \7
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QCD Sum Rules

Conclusions on Tools and Phenomenoogy

@ There are more phenomenological methods which
have not been mentioned

e QCD factorization for non-leptonic decays

e HQE calculations of neutral meson mixings

e Multibody decays

e CP Violation measurements and phenomenology
@ We are in the era of precision flavor physics

@ Sensitivity to NEW PHYSICS?

Thomas Mannel, University of Siegen Flavour Physics, Lecture 2
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Why Study Flavour Physics?

Why do we believe in TeV Physics?
Hints from the leptonic sector

Why Study Flavour Physics?
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Why Study Flavour Physics?

Why do we believe in TeV Physics?
Hints from the leptonic sector

@ The Standard Model passed all tests
up to the 100 GeV Scale:
@ LEP: test of the gauge Structure
@ Flavour factories: test of the Flavour Sector

Measurement Fit  lomeas_Oftj/gmeas

2 3
? L e e
m,[GeV] 91.1875+0.0021 91.1874 [ roesdmmtmtsas % ]
I [GeV]  24952+00023 24959 1ol e :
Opaq[Nb] 4154040037  41.478 — s S Amg&Am, ]
R, 20.767+0025 20742 Fsini2p ]
0,1 " r 1
AY 0.01714+0.00095 0.01646 05 |
R, 0.21629 +0.00066 0.21579 mmm F otk ]
R, 0.1721+0.0030  0.1722 IS 0.0 S |
AP 0.0992 +0.0016  0.1039 [ g
e 0.0707 +0.0035  0.0743 | [ 1
Ay 0923+0.020 0935 jmm 05 4
A, 067040027  0.668 r ]
A(SLD)  0.1513+00021  0.1482 a0k &
= Ttier solw/cos28<0
2. 78 | = Su:nm‘e!l 1 ¥ (excl. arc\.zfogs) +
e > 42 2002 | [ R A BTN ARTATAEN VRTINS [ S
m [GeV]  17320£080 17327 + 40 05 00 05 10 15 20

p
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Why Study Flavour Physics?

Why do we believe in TeV Physics?
Hints from the leptonic sector

No significant deviation has been found (yet)!

0.8 T T T T T T

07 sin(2p)
0.6 F B Y E

. only a few “tensions” 0s | 3

1= 04 F E|

(= Observables off by 20 P 3
or even less) o1 1M ;

Package
[ I I I I I
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LHC will perform a direct test of the TeV Scale
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- Phusics?
Why Study Flavour Physics? Why do we believe in TeV Physics?

Hints from the leptonic sector

Why do we believe in TeV Physics?

@ Theoretical argument:
@ Stabilization of the electroweak scale:

@ Quadratic Dependence on the cut-off

Amg =~ p2
H — 87T2 19A%

@ Drives the Higgs mass up to the UV cut off Ayy ~ Mp.

Thomas Mannel, University of Siegen Flavour Physics, Lecture 3



Why Study Flavour Physics?

Why do we believe in TeV Physics?
Hints from the leptonic sector

@ Stabilization at the TeV scale: e.g. through SUSY:
f S

H I 1

--- -——- \ ’
H _ _s_-.

.

@ Only logarithmic divergence

A, = m? In
H soft 1 67'['2 ( msoft)

@ My ~ O(TeV):
Splitting between particles and particles

Thomas Mannel, University of Siegen Flavour Physics, Lecture 3



Why Study Flavour Physics?

Why do we believe in TeV Physics?
Hints from the leptonic sector

@ How strong are these arguments?

@ Could there something be wrong with our
understanding of
e electroweak symmetry breaking?
e scale and conformal invariance?
(c.f. Lee Wick Model)
o ...
@ Does flavour tell us something about this?
.... and what?

Thomas Mannel, University of Siegen Flavour Physics, Lecture 3



- Phusics?
Why Study Flavour Physics? Why do we believe in TeV Physics?

Hints from the leptonic sector

What can Flavour tell us?

@ Effective field theory picture:

@ Standard model (without right handed v’s) is the
(dim-4) starting point.

@ Any new physics manifests itself as higher
dimensional operators:

L= 53%4 + Laims + Ldime + - - -
@ L4 are suppressed by large mass scales

1 () A0
ﬁdimn - An—4 Z Cn On
i

o: Operators of dimension n,
SU(3)c x SU(2)w x U(1)y gauge invariant
c!): dimensionless couplings
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- Phusics?
Why Study Flavour Physics? Why do we believe in TeV Physics?

Hints from the leptonic sector

Quark Flavour Physics

@ For Quarks there is no contribution to Lgim s
@ Some of the Of”) mediate AF = 2 flavour transitions:

O = (817,d)(87"d)  (Kaon Mixing)
0P = (byd)(biy*d)  (BaMixing)
0P = (by,2)(bir"s)  (Bs Mixing)
0 = (Gyu)(Eytu) (D Mixing)

@ A ~ 1000 TeV from Kaon mixing (C; = 1)
@ A ~ 1000 TeV from D mixing

@ A ~ 400 TeV from By mixing

@ A~ 70 TeV from Bs mixing

Thomas Mannel, University of Siegen Flavour Physics, Lecture 3



Why Study Flavour Physics?

Why do we believe in TeV Physics?
Hints from the leptonic sector

@ “New physics” is around the corner??

@ Are the flavour data a hint at a new physics scale well
above the TeV scale?

@ ... there are a few corners where O(1) flavour effects
are still possible, c.f. Charm CPV

@ Are there lessons from history?

Thomas Mannel, University of Siegen Flavour Physics, Lecture 3



Why Study Flavour Physics?

Why do we believe in TeV Physics?

Hints from the leptonic sector

The Top Quark Story

@ Firstindirect hintto a
heavy top quark:
B — B Oscillation of
ARGUS (1987)

@ The world in 1987
(“PETRA Days”):
The top was believed
to be at ~ 25 GeV

... based on good theoretical arguments

@ ARGUS could not
have seen anything
Wlth a 25 GeV TOp -34 Loaa gl IR Rl S .

10
2 S 10 20 50 100

(Within SM) TOTAL BEAM ENERGY (GeV) =
Thomas Mannel, University of Siegen Flavour Physics, Lecture 3
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Why Study Flavour Physics?

Why do we believe in TeV Physics?
Hints from the leptonic sector

@ The consequences:
(=) No Toponium
(—=) No Top quark discovery at LEP and SLC
(-) No “New Physcis O(30 GeV)” just around the corner
(+) CP violation in the B sector may become observable
(+) GIM is weak for bottom quarks

@ This was actually good for Flavour Physics ...
@ GIM suppressed decays as a probe for large scales

@ From current data: TeV “New Physics” must have a
flavour structure close to the one of the SM

@ — Concept of “Minimal Flavour Violation” (MFV)

Thomas Mannel, University of Siegen Flavour Physics, Lecture 3



. e
Why Study Flavour Physics? Why do we believe in TeV Physics?

Hints from the leptonic sector

Hints from the leptonic sector

@ L3V, does not have a right handed neutrino
@ ... thus no mixing for the leptons

@ Discovery of Neutrino Osciallations:
Nontrivial Flavour Physics of Leptons

@ Important observation: The combination
. +
-, = (i) r=wn=(3)

has no SM Quantum numbers

Thomas Mannel, University of Siegen Flavour Physics, Lecture 3



. e
Why Study Flavour Physics? Why do we believe in TeV Physics?

Hints from the leptonic sector

@ This allows for a Unique dim -5 Operator:
Generates Majorana masses for the v’s

»Cdim 5 —

Z CULH®)°(HL))

/\LNV

@ Generates a mixing matrix for the leptons (PMNS
Matrix), analogous to the CKM Matrix

@ This term is Lepton Number Violating, related to the
scale ALNV

@ Small Neutrino masses: A v must be high, almost
as big as the GUT scale?

@ Hopefully Agry and A;ry is not that high!

Thomas Mannel, University of Siegen Flavour Physics, Lecture 3



Quarks

Minimal Flavour Violation
Leptons

Minimal Flavour Violation

@ Flavour Violation of TeV “new physics” must be very
close to one of the Standard Model

@ Concept of “minimal flavour violation”:
All Flavour Violation (and CP violation) is CKM like
(D’Ambrosio et al. ’02, Ciuchini et al. ’98, Buras et al. '00)

@ More precise definition
D’Ambrosio et al., hep-ph/0207036

@ Leptonic Sector has also been considered as well
Grinstein et al., hep-ph/0507001, hep-ph/0601111

@ Standard Model is Minimally Flavour Violating per
definition

Thomas Mannel, University of Siegen Flavour Physics, Lecture 3



- - Quarks
Minimal Flavour Violation

Leptons

@ Most of the commonly used new physics models are
constructed to solve any others but the flavor
problems!

@ .. but we hope to see something at LHC!
@ So it has to be MFV!

Thomas Mannel, University of Siegen Flavour Physics, Lecture 3



Quarks

Minimal Flavour Violation
Leptons

Flavour Symmetry: Quarks

@ Largest Quark Flavour Symmetry commuting with the
Gauge Group of the Standard Model

Gr = SU(3)q, x SU(3)y, x SU(3)p,
with

QL:(D )N(371a1) URN(1a371) DRN(17173)
L
@ Gr is explicitely broken by the Yukawa couplings

Ly = OLHYDDR + C)LFIYUU;:,:

Thomas Mannel, University of Siegen Flavour Physics, Lecture 3



- - Quarks
Minimal Flavour Violation

Leptons

@ Diagonalization of the Yukawa Couplings
Yo = VL YoVor Y = V), YuVin

@ Leads after Spontaneous Symmetry Breaking to
diagonal Mass Matrices for the Quarks

@ Note that VUR € SU(S)UR and VDH € SU(S)DR
@ ... but both Vi, and Vp, should be € SU(3)q,
@ this leads to a relative and observable mismatch and

Verw = Vi, Vi,

@ Using mass eigenstates, Vv appears as the matrix
of charged current couplings.
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Quarks

Minimal Flavour Violation
Leptons

Spurions

@ Trick to parametrize explicit symmetry breaking:
Introduce “Spurions”

@ Spurion: Field with a well defined transformation
under the symmetry to be explicitely broken.

@ Write all terms that are allowed by the symmetry with
a finite number of insertions of the spurion field(s)

@ “Freeze” the spurion field(s) to a nonzero value:
“vacuum expectation value”

@ Explicit Symmetry breaking = Spontaneous
Symmetry Breaking without the Higgs degrees of
freedom

@ Small symmetry breaking: Power counting for the
spurion insertions is needed.
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Quarks

Minimal Flavour Violation
Leptons

Yukawa Couplings as Spurions

@ Interpret the Yukawa couplings as spurion fields
transforming as

Yu~(3,3,1) Yy~ (31,3)
@ In this way the Yukawa terms become formally

invariant under Gg

@ “Freezing” the Yukawa couplings to the observed
values breaks Gg explicitely.

@ Minimal Flavour Violation: The two spurions Yy and
Yp are the only sources of flavour violation.

Thomas Mannel, University of Siegen Flavour Physics, Lecture 3



Quarks

Minimal Flavour Violation
Leptons

Example B — Xgv in MFV

The b — sy decay is a Dg — D, transition.

Q. Dg is not invariant under Gr

Q.YpDgr — D.m3*Dg is flavour dlagonal

QLYu Y/}, YoDr — D Vi (mi™)? Vexumy ¢ Dr
minimal number of spurions for a flavour transition.
Leading term in b — sv: §; Vi Viym?mybg

@ Right handed helicities suppressed by a power of the
quark mass

@ FCNC require at least two CKM matrix elements,
at least one of which is off diagonal

@ GIM: no FCNC’s in case of degenerate quark masses

Thomas Mannel, University of Siegen Flavour Physics, Lecture 3



Quarks

Minimal Flavour Violation
Leptons

Flavour Symmetry: Leptons

@ “Minimal field content” (no right handed neutrino)

_ VL _
EL—(eL) Er=er

@ Smaller flavour group for the leptons

Gr = SU(3)g, x SU(3)e,
@ Transformations under Gr:
EL ~ (3, 1) and ER ~ (1,3)
@ Yukawa term for the leptons
Ly = ELHYEER
@ Yr can be diagonalized by a GF transformation
No flavour mixing for leptons !

Thomas Mannel, University of Siegen Flavour Physics, Lecture 3



Quarks

Minimal Flavour Violation
Leptons

Lepton Flavour Violation: Higher Dimensional Operators

@ Dim-5 operator leading to a v Majorana Mass Term

1
2NN

with N = (TQE”) + %) HL

1 [ v+ hy+ixo V2, >
and H=— .

V2 < —V2¢_ v+ hy—ixo

@ Ain: Scale of lepton number violation
@ g: New Spurion field transforming as (6, 1) under Gr
@ Yg, g can (in general) not be diagonal simultaneously

Thomas Mannel, University of Siegen Flavour Physics, Lecture 3
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Quarks

Minimal Flavour Violation
Leptons

New Physics in MFV: Quarks

Generic point of view: Consider the Standard model
as an effective theory, valid at the electroweak scale

@ “New Physics” enters below My, through power
suppressed operators with dimensions > 6

@ Assume that Yy, Yp (and Yg) are still the only
spurions explicitely breaking flavour

@ The flavour transitions of the new-physics
contributions are still suppressed by the same CKM
factors and masses as in the Standard Model

@ Focus first on quarks ...

Thomas Mannel, University of Siegen Flavour Physics, Lecture 3



Quarks

Minimal Flavour Violation
Leptons

Power Counting and Wolfenstein Parametrization

@ Power Counting ~ “small” symmetry breaking
@ Implemented by the Wolfenstein parametrization

12 A8
VCKM ~ )\ 1 )\2 )\ ~ 02
PP

@ Quark Masses (except top) are small compared to
the electroweak scale
@ Additional spurion insertions yields more suppression
(except for t — b transitions, fllavour diagonal)
@ Consider only minimal number of spurion insertions
e Up to four insertions for right — right transitions

Thomas Mannel, University of Siegen Flavour Physics, Lecture 3



Quarks

Minimal Flavour Violation
Leptons

Effective Field Theory Picture of New Physics

@ List the various quark transitions:

U Ur Dy Dp
U, Vi Yo YhVy, Vi Yo Y)Yy Vig Vi, Vg, V}, Yo Ve,
= VermB Vi = VexmMB Vi Mu = Vekm = VexmMp Vi

U h.c. Vi YYD Y)YuVis Vi Y Vg, Vi, Y] Yo Va,

= iy Verm M3 Vi o = My Vekm = iy VermMp Vi
D, h.c. h.c. Vi YuYjvg V) YuY] Yo Ve,

= Vekm ﬁ% Vekm = Vexm ﬁ% Vekm Mp
Dg h.c. h.c. h.c. VJR YSYuY] Yo Ve,
= fiip Vi M2 VekmMp

@ Loops may change the number of insertions:
Suppressed by powers of Wolfenstein A
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Quarks

Minimal Flavour Violation
Leptons

New Physics in MFV: Leptons

@ Majorana term is a “new physics” contribution

@ Distinguish between the scale of lepton flavour
violation and lepton number violation

@ For dim-6 operators: Possible Spurion combinations

gfxg~6x6=1+8+27

@ Bilinears (e.g. 7 — u~) are governed by A = (g' x g)s
— predicts e.g. relations between = — 1y and
T — ey

@ Four fermion operators for e.g. 7 — pup can have a
contribution of the 27-plet

@ Even in MFV no relation between
T—eyand T — euu

Thomas Mannel, University of Siegen Flavour Physics, Lecture 3



Guesses for Mass Matrices
Flavor Models

Flavor Models

Top-down instead of bottom-up

@ How to get an Idea about the mass matrices:
e Guess some matrices with as few parameters as
possible:
“Textures” as many zeros as possible
e Use some symmetry to obtain (at least qualitatively)
some insight into mass matrices
e.g. a simple horizontal U(1)

@ ,, or are the parameters “just s0”?

Thomas Mannel, University of Siegen Flavour Physics, Lecture 3



Guesses for Mass Matrices
Flavor Models

Textures: Two Family Example

@ Find two matrices M, and M, with less than five
parameters

@ — Relation(s) between m,, m., my, ms and ©¢
Simplest guess: Diagonal M, and nondiagonal Mgy

_( m, O (0 a
M“_<O mc> Md_(a Zb)
@ Matrix diagonalizing My is already the CKM Matrix

@ Four Parameters — One relation !

o Model predicts tan©¢ — % (which is not bad!)

S
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Guesses for Mass Matrices
Flavor Models

@ Has been done also for three families

@ Guesses often supported by assuming (discrete)
symemtries

@ Typical structure: tan 6 ~ /m;/m;

@ Remains Guesswork, until some deeper
understanding of the guesses emerges.
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Guesses for Mass Matrices
Flavor Models

Flavour Invariants

@ Precise form of the mass matrices depend on the
basis choice in Flavor space

@ Basis independent statements only as a relation
between Invariants

@ For the two-family case these are e.g.
h=Te(YyY)) k=Ti(YpY})
b =Te(YyY,YuY]) L=Te(YoY),YoY))
Is =Te(Yp YL YuY))

@ There are as many independent Invariants as there
are physical parameters
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Conclusion on New Physics in Flavor

@ Unlike in the gauge sector we do not have a guiding
principle to construct a theory of flavor

@ CKM as well as MFV is just a parametrization of
ignorance

@ No new physics model explainig flavor

@ ... maybe wit the exception of some “Frogatt Nielsen
like” models

@ can the parameters be “just s0”?
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Overall Conclusions

@ BaBar and Belle established the CKM picture of flavor
@ LHCb is running, squeezing the SM further:
® Bs — pp
e B— K*W
e V,p» measurements
@ Belle 2 is upcoming:
e Factor of 10 or 20 more data
e Significant increase in precision
e Look for rare and impossible decays
@ Atthe end:

Possible a clear indirect hint to BSM physics?
@ But how can we finally tell, if the scales are really
very high?

Thomas Mannel, University of Siegen Flavour Physics, Lecture 3
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