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The Plan:
• Topological Insulators (?)

• Model

• Connection and Curvature

• Wilson loop and non-Abelian Stokes Theorem

• First-quantized Hamiltonian and Singular points

• Fundamental group of Torus

• Calculating some of the Wilson Loops

• Group structure of Wilson Loops

• Holonomy Group
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Topological Insulators (?)

• Existence of a conducting surface.

• Bulk remains insulator.

• Defining factors: topology of the 
eigenvectors and discrete symmetries 

• Different from Landau’s theory to 
describe phase transitions.
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A Model

• 2D lattice with fermions on its sites.

• General term in Hamiltonian: 𝛼 𝑐𝑚,𝑛
† 𝑐𝑘,𝑙 .

• Going to the Momentum space: 

• 1ℬ𝒵 (𝑇2):  𝑘1, 𝑘2 = −𝜋 𝑚𝑜𝑑 2𝜋 .

෡𝐻 = ℬ𝒵𝜓׬
†ℋ 𝒌 𝑁×𝑁𝜓 𝑑𝒌 (1)
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Connection and Curvature
• For ℋ 𝒌 𝑁×𝑁 Berry Connection matrix:

where 𝜓𝑚 𝒌 - eigenvectors of ℋ(𝒌), 𝑚, 𝑛, 𝜇 = 1,… , 𝑁.

• Curvature tensor: 

𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 + 𝑖 𝐴𝜇 , 𝐴𝜈 (3)

• Using the expression of 𝐴𝜇 𝑚𝑛
𝒌 , we showed that

𝐹𝜇𝜈 𝑚𝑛
= 𝑖 𝜓𝑛

†

𝑘
(𝜕𝜇𝜕𝜈 − 𝜕𝜈𝜕𝜇) 𝜓𝑚 𝑘 (4)

𝐴𝜇 𝑚𝑛
𝒌 = 𝑖𝜓𝑛

† 𝒌 𝜕𝜇𝜓𝑚 𝒌 , 2
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Wilson loop and non-Abelian Stokes Theorem.

• Wilson loop:

𝑊𝛾 = 𝒫 exp −𝑖 𝛾𝐴𝜇ׯ d𝑘
𝜇 5

• "𝒫“ – path ordering ( the main difficulty ), 𝛾 – a loop on torus.

• Determinant, trace, eigenvalues – Gauge invariants.

• Non-Abelian Stokes Theorem (R.L. Karp, F. Mansouri, J.S. Rno (1999)).

𝑊 𝒌0 = 𝒫 exp −𝑖 𝑆𝐴𝜇��ׯ d𝑘
𝜇 = 𝒫𝑘2 exp −

𝑖

2
𝑠׬ 𝑇

−1(𝒌)𝐹𝜇𝜈𝑇(𝒌) d𝑘𝜇 ∧ d𝑘𝜈 .     (6)
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Making Calculations easier
• Using the non-Abelian Stokes Theorem + behaviour of the Curvature.

𝑊 𝒌0 = 𝑇−1 𝒌0 exp −𝑖 න
𝑆

𝐹𝜇𝜈 d𝑆
𝜇𝜈 𝑇 𝒌0 (7)

𝑊 𝒌0 = 𝑇−1 𝒌0 𝑒−2𝜋𝑖Φ 𝒌0 𝑇 𝒌0 , (8)

• where Φ 𝒌0 is a Berry phase (M. Berry, 1988):

Φ 𝒌0 =
1

2𝜋
ර
𝒌0

𝐴𝜇d𝑘
𝜇 =

1

2𝜋
න
𝑆→0

𝐹𝜇𝜈
𝑎𝑏𝑒𝑙𝑖𝑎𝑛d𝑆𝜇𝜈 (9)

7



First-quantized Hamiltonian

• Choosing the first-quantized Hamiltonian to be:    ℋ 𝒌 = 𝒉 𝒌 ∙ 𝝈 (10) 

𝒉 = h1, h2, h3 , 𝝈 = (𝜎1, 𝜎2, 𝜎3) – Pauli matrices.

• 𝐸1,2 = ± 𝒉 ≡ ±ℎ. Eigenvectors:

𝜓1 =
1

2ℎ(ℎ − ℎ3)

ℎ1 − 𝑖ℎ2
ℎ − ℎ3

, 𝜓2 =
1

2ℎ(ℎ − ℎ3)

−ℎ + ℎ3
ℎ1 − 𝑖ℎ2

.

• Source of singularities: ℎ = 0 and ℎ = ℎ3.

• Gap closure.
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Fundamental group of Torus

• π1 𝑇2 = ℤ × ℤ.

• Each loop can be characterized by two integers 𝑚,𝑛 , where 𝑚
counts a winding number around a big principal circle of torus and 
𝑛 – around a small principal circle.

• For example: blue loop – (1,0),

red loop  – (0,1)
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Calculating some of the Wilson Loops

• Easy when 𝛾′s are contractible (characterized by the pair (0,0)).

• If inside 𝛾 there is no singular points, then 𝑊 𝛾 is trivial, since 
∀𝒌 ∈ 𝑇2, 𝐹𝜇𝜈= 𝕆

• If there is 𝒌0 inside the loop such that ℎ − ℎ3 ȁ𝒌0 = 0:

𝑊 𝒌0 = 𝑇−1𝑒−2𝜋𝑖Φ 𝒌0 𝑇 =

= 𝑇−1𝑒−2𝜋𝑖𝑛(∈ℤ)𝜎3𝑇 = 𝕝2×2 (11)

• The same is true when the number of such points
inside a loop is more than one.
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Group Structure of Wilson Loops
• Let 𝒲𝒌01 be the set of Wilson loops with 𝒌01 as a starting (and ending) 

point. It can be showed that for it group axioms are satisfied. 

• For each element 𝑊𝒌01 of this group we have an inverse: 𝑊𝒌01
−1 = 𝑊𝒌01

†

• We can characterize each element of this group by the loop labels (m,n).

Since  𝑊𝑎𝑏𝑎′𝑐𝑎 = 𝕝,    𝑊𝑎𝑏𝑎′ = 𝑊𝑎𝑐𝑎′

Label of the loop (and the corresponding element in 𝒲𝒌01)

(1,0)
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Group Structure of Wilson Loops

• 𝜋1 𝑇2 = ℤ × ℤ → 𝒲𝒌01 .

• ⇒𝒲𝒌01 is an abelian group with 

two generators that correspond to 
the loops (1,0) and 0,1 .

• Any element of the group 
can be written as

𝑊𝑚,𝑛 = 𝑊(1,0)
𝑚 ∙ 𝑊 0,1

𝑛 .
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Group Structure of Wilson Loops

• Relation between 𝒲𝒌 and 𝒲෩𝒌, both isomorphic to ℤ × ℤ.

• Since 𝑊𝑘𝑎′𝑏′ ෨𝑘𝑏𝑎𝑘 = 𝕝,  

𝑊𝑘𝑎′𝑎 = 𝑈†𝑊𝑎𝑐𝑎′𝑈,

• Where 𝑈 = 𝑊෨𝑘𝑏𝑎𝑘.
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Holonomy Group

• Φ = Ψg, where 𝑔 ∈ 𝑆𝑈(2).

• 𝒉 = (0,0, ℎ3) – problem for Ψ; 

• 𝒉 = (0,0, −ℎ3) – problem for Φ

• Assume ℎ ≠ 0.

Principal bundle 𝐸 = 𝑇2 × 𝑆𝑈 2 , 𝜋, 𝑇2

Sections Ψ = 1/ 2(𝜓1 𝜓2),Φ = 1/ 2 𝜓′
1 𝜓′

2

Connection 1-form 𝐴𝑚𝑛 = 𝐴𝜇(∈ 𝓈𝓊(2))𝑑𝑘𝜇

Curvature (2-form) 𝐹 = 𝑑𝐴 + 𝐴 ∧ 𝐴 = 1/2𝐹𝜇𝜈𝑑𝑘
𝜇 ∧ 𝑑𝑘𝜈

𝐴𝜇 = Ψ 𝑛𝑘𝜕𝜇Ψ𝑘𝑚 𝑑𝑘𝜇

𝐹𝜇𝜈 = 𝜕𝜇 𝐴𝜈 − 𝜕𝜈𝐴𝜇 + 𝐴𝜇 , 𝐴𝜈
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Holonomy Group

𝐻𝑜𝑙𝑝∈𝑇2 = 𝑔𝛾 𝛾ℎ
↑ 𝑒𝑛𝑑 𝑝𝑜𝑖𝑛𝑡 = ℎ𝑔𝛾},

• where 𝛾ℎ
↑ means horizontal lift of 𝛾 (loop on 𝑇2), ℎ = 𝛾ℎ

↑ 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑝𝑜𝑖𝑛𝑡 .

• 𝐻𝑜𝑙𝛾
0 − when 𝛾’s are contractible

• Useful features:

1) If connected, then 𝐻𝑜𝑙𝑞 𝐴 = 𝑔−1𝐻𝑜𝑙𝑝𝑔.

2) If simply connected, then H𝑜𝑙 𝐴 = 𝐻𝑜𝑙0(𝐴).

3) A is flat if and only if 𝐻𝑜𝑙0(𝐴) is trivial.

4) Natural surjective group homomorphism: 
𝜋1(𝑏𝑎𝑠𝑒 𝑠𝑝. ) → 𝐻𝑜𝑙 𝐴 / 𝐻𝑜𝑙0(𝐴).           
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Summary:

• 𝐹𝜇𝜈 is equal to zero everywhere on 𝑇2 except the points where 𝜓’s  are 

singular.

• Using the Non-Abelian Stokes theorem and the behaviour of 𝐹𝜇𝜈, 

calculations are simplified.

• 𝑊 = 𝕝 for all contractible loops that do not contain any of the singular 

points or contain singular points in which the energy gap is open.

• The set of {𝑊𝒌} has a group structure and is isomorphic to ℤ × ℤ.

• The same results are achieved if we look at the set {𝑊𝒌} as the holonomy 

group of 𝐴.
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