

Ivane Javakhishvili Tbilisi State University

Tinatin Supatashvili

“ On the Wilson loops in 2D  
tight-binding models ”

arXiv:2108.06510v1, *Group Structure of Wilson Loops in 2D Models with 2- and 4-Band Energy Spectra*, Authors: T.Spatashvili, M.Eliashvili, G.Tsitsishvili

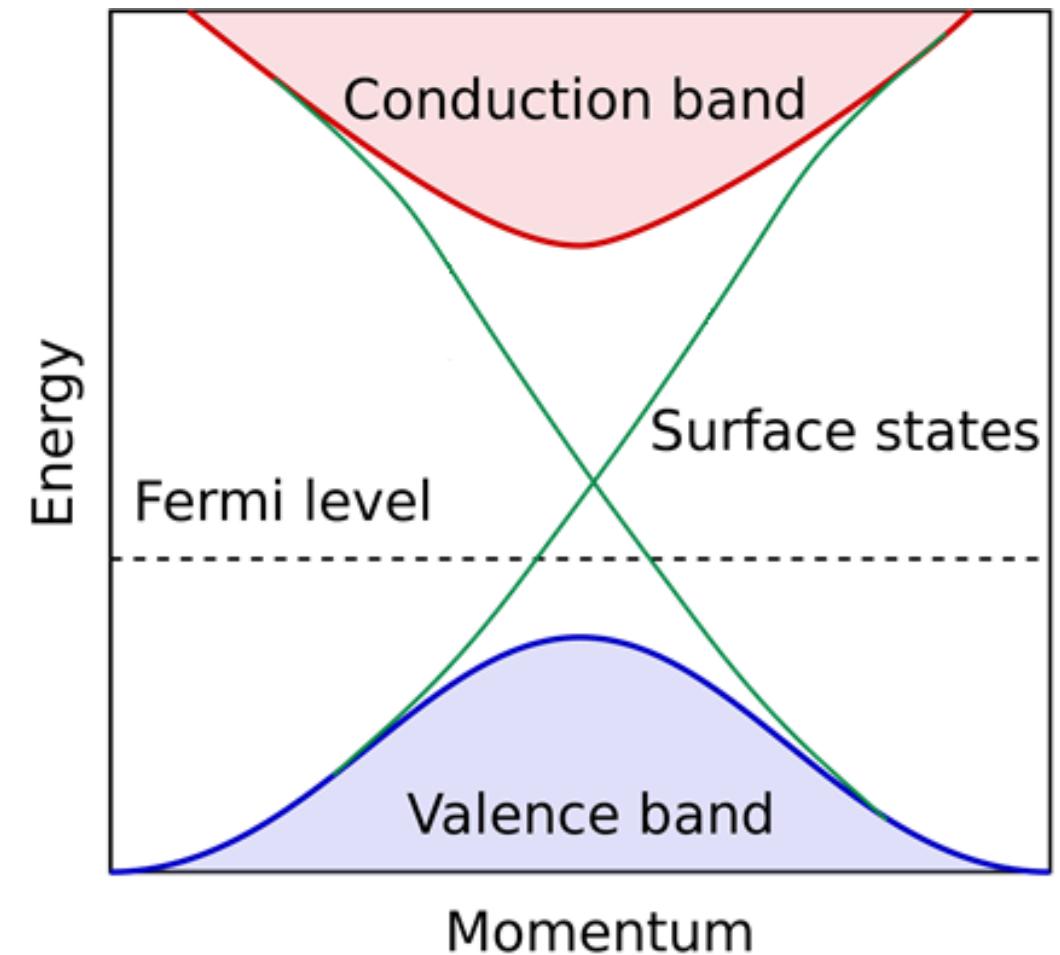
10.11.2021

# The Plan:

- Topological Insulators (?)
- Model
- Connection and Curvature
- Wilson loop and non-Abelian Stokes Theorem
- First-quantized Hamiltonian and Singular points
- Fundamental group of Torus
- Calculating some of the Wilson Loops
- Group structure of Wilson Loops
- Holonomy Group

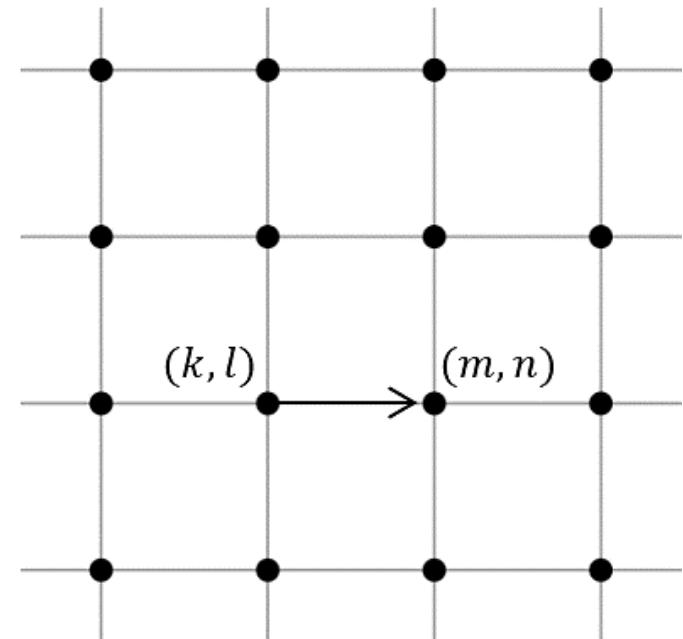
# Topological Insulators (?)

- Existence of a conducting surface.
- Bulk remains insulator.
- Defining factors: topology of the eigenvectors and discrete symmetries
- Different from Landau's theory to describe phase transitions.



# A Model

- 2D lattice with fermions on its sites.
- General term in Hamiltonian:  $\alpha c_{m,n}^\dagger c_{k,l}$ .
- Going to the Momentum space:
- 1BZ ( $T^2$ ):  $k_1, k_2 = -\pi \pmod{2\pi}$ .



$$\hat{H} = \int_{BZ} \psi^\dagger \mathcal{H}(\mathbf{k})_{N \times N} \psi \, d\mathbf{k} \quad (1)$$

# Connection and Curvature

- For  $\mathcal{H}(\mathbf{k})_{N \times N}$  Berry Connection matrix:

$$(A_\mu)_{mn}(\mathbf{k}) = i\psi_n^\dagger(\mathbf{k})\partial_\mu\psi_m(\mathbf{k}), \quad (2)$$

where  $\psi_m(\mathbf{k})$  - eigenvectors of  $\mathcal{H}(\mathbf{k})$ ,  $m, n, \mu = 1, \dots, N$ .

- Curvature tensor:

$$F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu + i[A_\mu, A_\nu] \quad (3)$$

- Using the expression of  $(A_\mu)_{mn}(\mathbf{k})$ , we showed that

$$\boxed{(F_{\mu\nu})_{mn} = i(\psi_n^\dagger)_k(\partial_\mu\partial_\nu - \partial_\nu\partial_\mu)(\psi_m)_k} \quad (4)$$

# Wilson loop and non-Abelian Stokes Theorem.

- Wilson loop:

$$W_\gamma = \mathcal{P} \exp \left\{ -i \oint_\gamma A_\mu dk^\mu \right\} \quad (5)$$

- " $\mathcal{P}$ " – path ordering ( the main difficulty ),  $\gamma$  – a loop on torus.
- Determinant, trace, eigenvalues – Gauge invariants.
- Non-Abelian Stokes Theorem (R.L. Karp, F. Mansouri, J.S. Rno (1999)).

$$W(\mathbf{k}_0) = \mathcal{P} \exp \left\{ -i \oint_{\partial S} A_\mu dk^\mu \right\} = \mathcal{P}_{\mathbf{k}_2} \exp \left\{ -\frac{i}{2} \int_S T^{-1}(\mathbf{k}) F_{\mu\nu} T(\mathbf{k}) dk_\mu \wedge dk_\nu \right\}. \quad (6)$$

# Making Calculations easier

- Using the non-Abelian Stokes Theorem + behaviour of the Curvature.

$$W(\mathbf{k}_0) = T^{-1}(\mathbf{k}_0) \exp \left\{ -i \int_S F_{\mu\nu} \, dS^{\mu\nu} \right\} T(\mathbf{k}_0) \quad (7)$$

$$W(\mathbf{k}_0) = T^{-1}(\mathbf{k}_0) e^{-2\pi i \Phi(\mathbf{k}_0)} T(\mathbf{k}_0), \quad (8)$$

- where  $\Phi(\mathbf{k}_0)$  is a Berry phase (M. Berry, 1988):

$$\Phi(\mathbf{k}_0) = \frac{1}{2\pi} \oint_{\mathbf{k}_0} A_\mu \, dk^\mu = \frac{1}{2\pi} \int_{S \rightarrow 0} F_{\mu\nu}^{ab\text{elian}} \, dS^{\mu\nu} \quad (9)$$

# First-quantized Hamiltonian

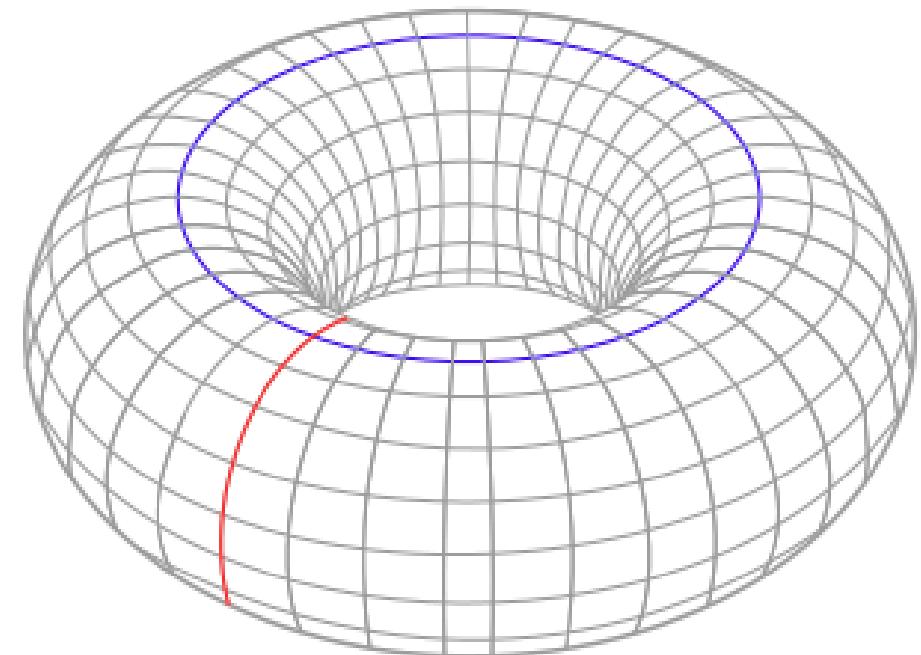
- Choosing the first-quantized Hamiltonian to be:  $\mathcal{H}(\mathbf{k}) = \mathbf{h}(\mathbf{k}) \cdot \boldsymbol{\sigma}$  (10)  
 $\mathbf{h} = (h_1, h_2, h_3)$ ,  $\boldsymbol{\sigma} = (\sigma_1, \sigma_2, \sigma_3)$  – Pauli matrices.
- $E_{1,2} = \pm |\mathbf{h}| \equiv \pm h$ . Eigenvectors:

$$\psi_1 = \frac{1}{\sqrt{2h(h-h_3)}} \begin{pmatrix} h_1 - ih_2 \\ h - h_3 \end{pmatrix}, \quad \psi_2 = \frac{1}{\sqrt{2h(h-h_3)}} \begin{pmatrix} -h + h_3 \\ h_1 - ih_2 \end{pmatrix}.$$

- Source of singularities:  $h = 0$  and  $h = h_3$ .
- Gap closure.

# Fundamental group of Torus

- $\pi_1(T^2) = \mathbb{Z} \times \mathbb{Z}$ .
- Each loop can be characterized by two integers  $(m, n)$ , where  $m$  counts a winding number around a big principal circle of torus and  $n$  – around a small principal circle.
- For example: blue loop –  $(1,0)$ ,  
red loop –  $(0,1)$

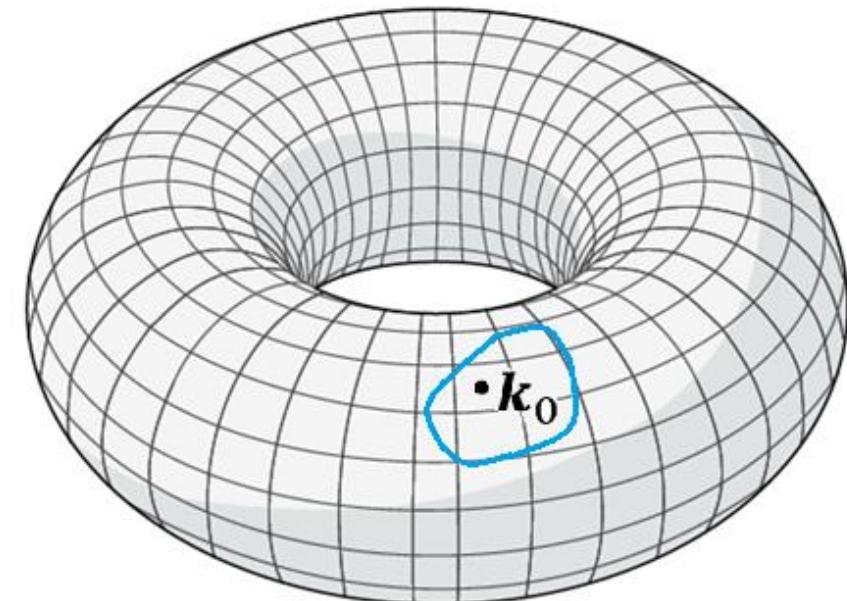


# Calculating some of the Wilson Loops

- Easy when  $\gamma$ 's are contractible (characterized by the pair  $(0,0)$ ).
- If inside  $\gamma$  there is no singular points, then  $W(\gamma)$  is trivial, since
$$\forall \mathbf{k} \in T^2, F_{\mu\nu} = 0$$
- If there is  $\mathbf{k}_0$  inside the loop such that  $(h - h_3)|_{\mathbf{k}_0} = 0$ :

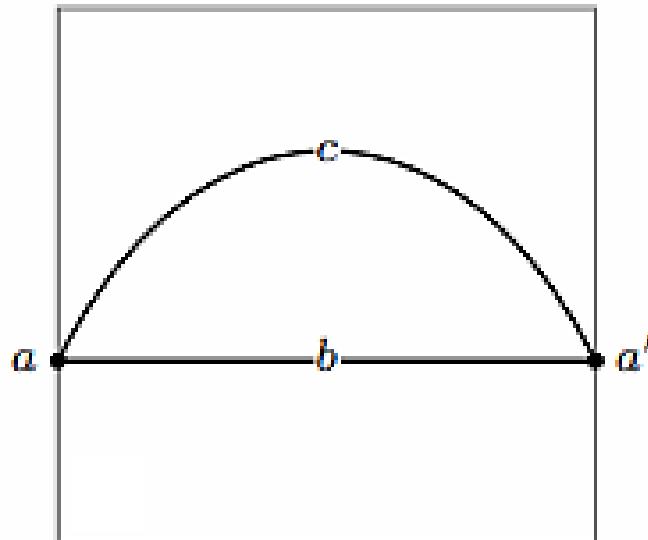
$$\begin{aligned} W(\mathbf{k}_0) &= T^{-1} e^{-2\pi i \Phi(\mathbf{k}_0)} T = \\ &= T^{-1} e^{-2\pi i n (\in \mathbb{Z}) \sigma_3} T = \mathbb{I}_{2 \times 2} \end{aligned} \tag{11}$$

- The same is true when the number of such points inside a loop is more than one.



# Group Structure of Wilson Loops

- Let  $\mathcal{W}_{k_{01}}$  be the set of Wilson loops with  $k_{01}$  as a starting (and ending) point. It can be showed that for it group axioms are satisfied.
- For each element  $W_{k_{01}}$  of this group we have an inverse:  $W_{k_{01}}^{-1} = W_{k_{01}}^\dagger$
- We can characterize each element of this group by the loop labels (m,n).



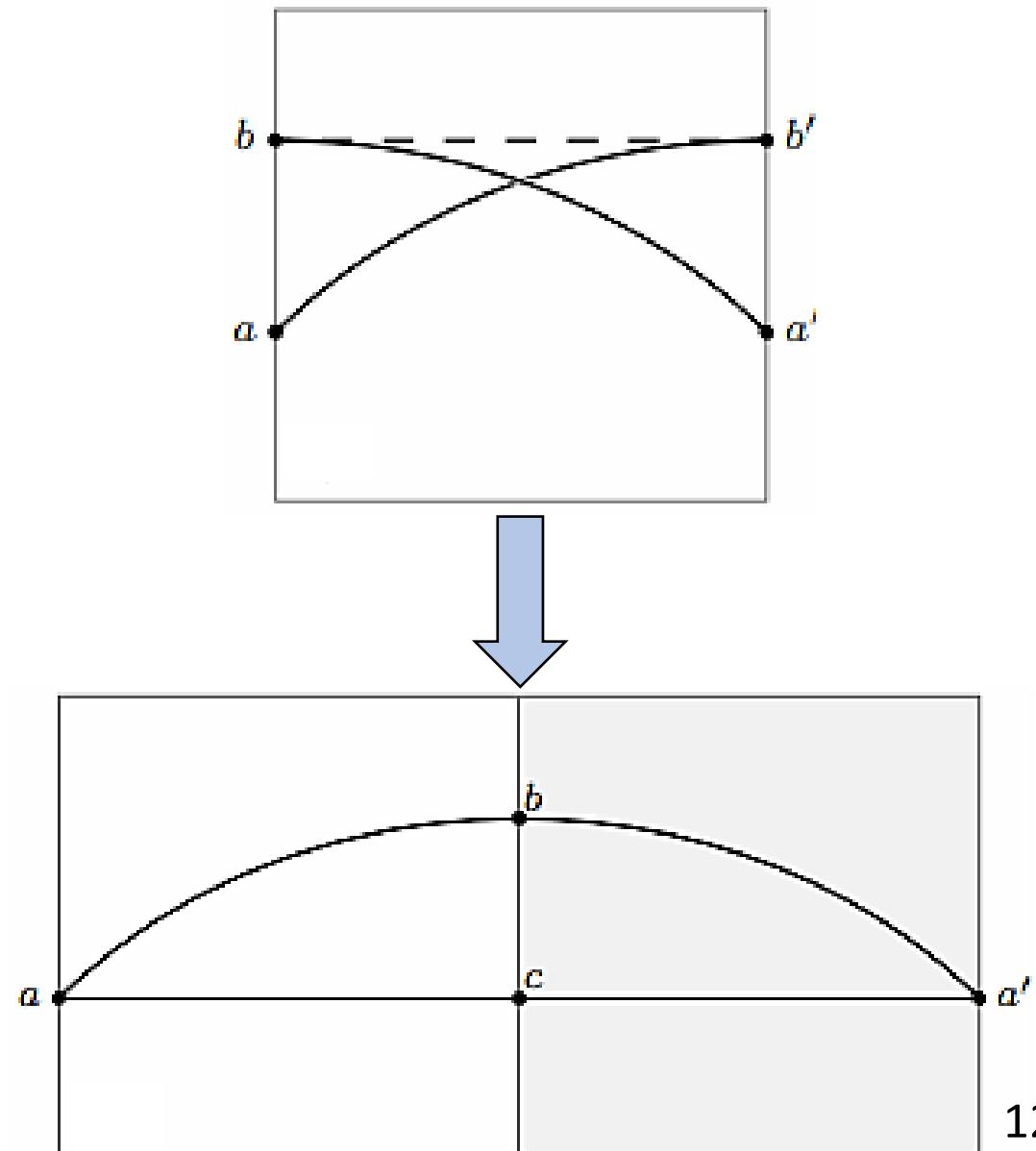
Since  $W_{aba'ca} = \mathbb{I}$ ,  $W_{aba'} = W_{aca'}$

Label of the loop (and the corresponding element in  $\mathcal{W}_{k_{01}}$ )

(1,0)

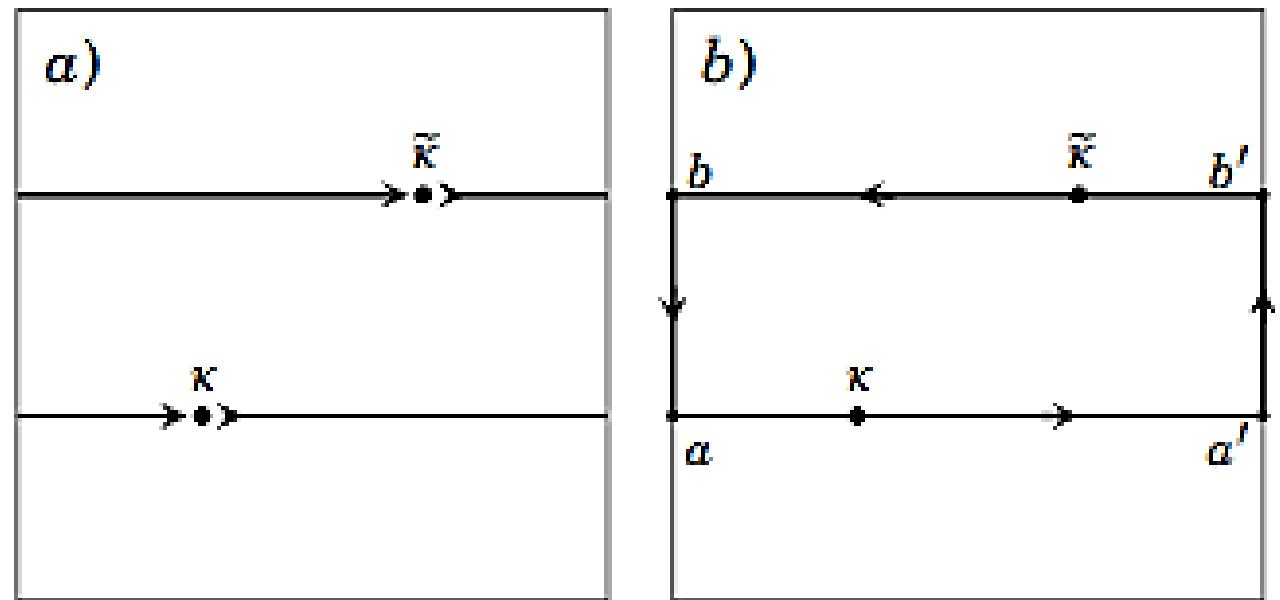
# Group Structure of Wilson Loops

- $\pi_1(T^2) = \mathbb{Z} \times \mathbb{Z} \rightarrow \mathcal{W}_{k_{01}}$ .
- $\Rightarrow \mathcal{W}_{k_{01}}$  is an abelian group with two generators that correspond to the loops  $(1,0)$  and  $(0,1)$ .
- Any element of the group can be written as  $W_{(m,n)} = W_{(1,0)}^m \cdot W_{(0,1)}^n$ .



# Group Structure of Wilson Loops

- Relation between  $\mathcal{W}_k$  and  $\mathcal{W}_{\tilde{k}}$ , both isomorphic to  $\mathbb{Z} \times \mathbb{Z}$ .
- Since  $W_{ka'b'\tilde{k}ba} = \mathbb{I}$ ,
$$W_{ka'a} = U^\dagger W_{aca'} U,$$
- Where  $U = W_{\tilde{k}ba}$ .



# Holonomy Group

|                    |                                                                            |
|--------------------|----------------------------------------------------------------------------|
| Principal bundle   | $(E = T^2 \times SU(2), \pi, T^2)$                                         |
| Sections           | $\Psi = 1/\sqrt{2}(\psi_1 \ \psi_2), \Phi = 1/\sqrt{2}(\psi'_1 \ \psi'_2)$ |
| Connection 1-form  | $A_{mn} = A_\mu (\in su(2)) dk^\mu$                                        |
| Curvature (2-form) | $F = dA + A \wedge A = 1/2 F_{\mu\nu} dk^\mu \wedge dk^\nu$                |

- $\Phi = \Psi g$ , where  $g \in SU(2)$ .
- $\mathbf{h} = (0, 0, h_3)$  – problem for  $\Psi$ ;
- $\mathbf{h} = (0, 0, -h_3)$  – problem for  $\Phi$
- Assume  $h \neq 0$ .

$$A_\mu = (\Psi)_{nk} \partial_\mu \Psi_{km} dk^\mu$$

$$F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu + [A_\mu, A_\nu]$$

# Holonomy Group

$$Hol_{p \in T^2} = \{g_\gamma | \gamma_h^\uparrow(\text{end point}) = hg_\gamma\},$$

- where  $\gamma_h^\uparrow$  means horizontal lift of  $\gamma$  (loop on  $T^2$ ),  $h = \gamma_h^\uparrow(\text{starting point})$ .
- $Hol_\gamma^0$  – when  $\gamma$ 's are contractible
- Useful features:
  - 1) If connected, then  $Hol_q(A) = g^{-1}Hol_p g$ . ✓
  - 2) If simply connected, then  $Hol(A) = Hol^0(A)$ .
  - 3)  $A$  is flat if and only if  $Hol^0(A)$  is trivial. ✓
  - 4) Natural surjective group homomorphism:  
 $\pi_1(\text{base sp.}) \rightarrow Hol(A)/Hol^0(A)$ . ✓

# Summary:

- $F_{\mu\nu}$  is equal to zero everywhere on  $T^2$  except the points where  $\psi$ 's are singular.
- Using the Non-Abelian Stokes theorem and the behaviour of  $F_{\mu\nu}$ , calculations are simplified.
- $W = \mathbb{I}$  for all contractible loops that do not contain any of the singular points or contain singular points in which the energy gap is open.
- The set of  $\{W_k\}$  has a group structure and is isomorphic to  $\mathbb{Z} \times \mathbb{Z}$ .
- The same results are achieved if we look at the set  $\{W_k\}$  as the holonomy group of  $A$ .

# References:

- B.A. Bernevig, T.L. Hughes, *Topological Insulators and Topological Superconductors*, Princeton University Press, 2013.
- R.L. Karop, F. Mansouri, J.S. Rno, Product Integral Represenatitions of Wilson lines and Wilson Loops and Non-Abelian Stokes Theorem, *Turk.J.Phys.* 24 (2000) 365-384, 1999,  
[arXiv:hep-th/9903221v1](https://arxiv.org/abs/hep-th/9903221v1).
- R. Matsudo, K.I. Kondo, Non-Abelian Stokes Theorem for the Wilson Loop Operator in an Arbitrary Representation and its Implication to Quark Confinement, *Phys. Rev. D* 92, 125038, 2015,  
[arXiv:1509.04891v2](https://arxiv.org/abs/1509.04891v2).
- D. Vanderbilt, *Berry Phases in Electronic Structure Theory*. Cambridge University Press, 2018.
- Berry, M V, 1988, ‘The geometric phase’, *Scientific American*, 259 (6), 26-34.