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The Plan:

* Topological Insulators (?)

* Model

* Connection and Curvature

* Wilson loop and non-Abelian Stokes Theorem

* First-quantized Hamiltonian and Singular points
* Fundamental group of Torus

 Calculating some of the Wilson Loops

* Group structure of Wilson Loops

* Holonomy Group



Topological Insulators (?)

* Existence of a conducting surface.
* Bulk remains insulator.

* Defining factors: topology of the
eigenvectors and discrete symmetries

* Different from Landau’s theory to
describe phase transitions.

Energy

Conduction band

Surface states
Fermi level

Valence band

Momentum



A Model

* 2D lattice with fermions on its sites. /Y
* General term in Hamiltonian: a ¢, ,,Ck ;. S —

. (kD (m,n)
* Going to the Momentum space: o e——>e

e 1BZ (TZ): kl,kz — —T1T (mOd 27T)

H = fBZ YIH (k) dk (1)



Connection and Curvature

* For H (k) Berry Connection matrix:

(4y) (k) = iyt (k)3 pm (), (2)

where Y, (k) - eigenvectors of H (k), m,n,u =1, ..., N.
e Curvature tensor:
E, = 0,4, — 0,4, +i|A, A, (3)

* Using the expression of (A“)mn (k) , we showed that

! (Fl“/)mn l(l/) ) ((7 Oy avau)(l/)m)k : (4)



Wilson loop and non-Abelian Stokes Theorem.

* Wilson loop:
W, = Pexpl{—i § A, dict} (5)

» "P“ — path ordering ( the main difficulty ), y —a loop on torus.

* Determinant, trace, eigenvalues — Gauge invariants.

* Non-Abelian Stokes Theorem (R.L. Karp, F. Mansouri, J.S. Rno (1999)).

W (ko) = P exp{—i§, A, dk# } = P exp{—= [ T (k)E, T(k) dk, Adk,}.  (6)



Making Calculations easier

* Using the non-Abelian Stokes Theorem + behaviour of the Curvature.

W (ko) = T~ (kg)exp {_i jFuv dSW} T (ko) (7)
S
W (ko) = T 1(ko)e 2™ Pk T (ky), (8)
* where ®(k,) is a Berry phase (M. Berry, 1988):

1 1 .
d(ky) =—¢ A,dk* =—| EiPetandswy 9



First-quantized Hamiltonian

 Choosing the first-quantized Hamiltonian to be: H (k) = h(k) - (10)

h = (hl' hz, hg), 0O — (0-1, 0y, 0-3) — Pauli matrices.

* E,, = £|h| = £h. Eigenvectors:

b, = 1 (h1 — ih2> v, = 1 (—h + h3>
© o 2h(h—hzy) \ h—h3 )’ * T J2h(h = hg) \h1 —ihy)’

* Source of singularities: h = 0 and h = hs.

* Gap closure.



Fundamental group of Torus

¢ T[l(Tz) = 7 X /.

* Each loop can be characterized by two integers (m, n), where m
counts a winding number around a big principal circle of torus and
n —around a small principal circle.

* For example: blue loop - (1,0), C :
red loop —(0,1) IF.;_________J_#_



Calculating some of the Wilson Loops

 Easy when y's are contractible (characterized by the pair (0,0)).

* If inside y there is no singular points, then W (y) is trivial, since
vk e€T? F,=0

* If there is k inside the loop such that (h — h3)|g, = O:

W(ko) — 7-1 —andb(kO)T — =
— T~ 1e—2nm(EZ)agT — ]12><2 (11) [

* The same is true when the number of such points Aok,
inside a loop is more than one. =
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Group Structure of Wilson Loops

* Let Wy, be the set of Wilson loops with k; as a starting (and ending)
point. It can be showed that for it group axioms are satisfied.

* For each element Wy of this group we have an inverse: Wk_oi = W,jo1

* We can characterize each element of this group by the loop labels (m,n).

/ \ Label of the loop (and the corresponding element in W)
v] b a’

(1,0)
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Group Structure of Wilson Loops

» m(T?) =ZXZ-> Wy,

* = Wy, is an abelian group with

two generators that correspond to
the loops (1,0) and (0,1).

* Any element of the group
can be written as

Wanny = Witoy - Wio,)-
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Group Structure of Wilson Loops

* Relation between Wy, and Wy, both isomorphic to Z X Z.

* Since W, 1,5 =1
ka b kbak > a) b)
K K ;
Wia'a = U Wyea U, b — &
* Where U = Wiy k- +
—:I-:::I' ' :': > o
g
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Holonomy Group

Principal bundle

(E =T?x SU(2),m, T?)

Sections

Y =1/V2(; ¢,), @ = 1/‘/5(1/”1 1/)’2)

Connection 1-form

Apn = Ay (€ su(2))dkH

Curvature (2-form)

F=dA+ANA=1/2F,dk* A dk”

e ® =Yg where g € SU(2).

* h = (0,0, h3) — problem for ¥;
* h = (0,0, —h3) — problem for ®
* Assume h # 0.

A/,L — (Lp)nkaqukm di*

E,=0,4,— 0,4, +|A,A4, ]
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Holonomy Group

HolpETz = {gy‘yg(end point) = hgy,},
» where y; means horizontal lift of y (loop on T?), h = ¥} (starting point).
- H ol](} — when y’s are contractible

e Useful features:

1) If connected, then Hol,(A) = g 'Hol,g. v
2) If simply connected, then Hol(A) = Hol°(4).
3) A is flat if and only if Hol°(A) is trivial. V4

4) Natural surjective group homomorphism:
mt,(base sp.) - Hol(A)/ Hol°(A). v
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Summary:

* F,,, is equal to zero everywhere on T* except the points where ’s are
singular.

* Using the Non-Abelian Stokes theorem and the behaviour of F,,,
calculations are simplified.

* W = I for all contractible loops that do not contain any of the singular
points or contain singular points in which the energy gap is open.

* The set of {W} has a group structure and is isomorphic to Z X Z.

* The same results are achieved if we look at the set {WW},} as the holonomy
group of 4.
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