

Anomalies in B Decays:

A first hint at physics beyond the Standard Model?

Thomas Mannel

Center for Particle Physics Universität Siegen

Aspects of Symmetry, Byteland, 08.11. - 12.11.2021

Outline

1 Introduction: FCNC Processes

2 **B** Physics Anomalies: Experiment

3 **B** Physics Anomalies: Theory

- Controlling the SM part
- “New Physics” Interpretations

Introduction

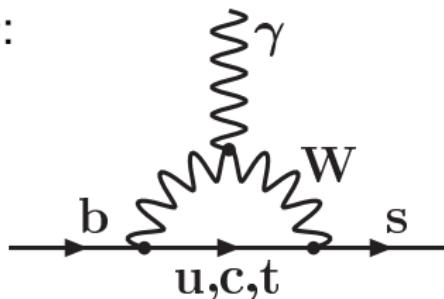
Where to search for new effects?

- Decays which are forbidden in the SM
 - ... by symmetries: e.g. Baryon number: $B \rightarrow \Lambda_c \mu$ and alike
 - ... by approximate symmetries: e.g. Lepton Flavour: $\mu \rightarrow e \gamma$ and alike
- decays which are rare in then SM
 - ... by small couplings: e.g. CKM parameters: $B \rightarrow \pi \ell \bar{\nu}$ and alike
 - ... by loop suppression: e.g. FCNC processes: $B \rightarrow K^* \gamma$ and alike
- “Bread and Butter” Decays, where we have an excellent theoretical SM prediction
 - ... Purely leptonic decays $B \rightarrow \tau \bar{\nu}$ and alike
 - ... inclusive / exclusive semileptonic decays $B \rightarrow X \ell \bar{\nu}$, $B \rightarrow D^{(*)} \ell \bar{\nu}$ and alike

FCNC Processes

FCNC Processes are special: Test of the GIM mechanism

Example: $b \rightarrow s\gamma$:



$$\mathcal{A}(b \rightarrow s\gamma) = V_{ub} V_{us}^* f(m_u) + V_{cb} V_{cs}^* f(m_c) + V_{tb} V_{ts}^* f(m_t)$$

In case of degenerate masses up-type masses:

$$\mathcal{A}(b \rightarrow s\gamma) = f(m) [V_{ub} V_{us}^* + V_{cb} V_{cs}^* + V_{tb} V_{ts}^*] = 0$$

The loop yields a finite result, also for non-degenerate quark masses!

- The finite result is a function of $m_t^2 - m_u^2$ and $m_t^2 - m_c^2$
- The loop generates a factor $1/(16\pi^2)$
- **Top mass is dominant:** $\mathcal{A}(b \rightarrow s\gamma) \sim \frac{G_F^2}{16\pi^2} V_{tb} V_{ts}^* \frac{m_t^2}{M_W^2}$
- In the up quark sector $t \rightarrow c\gamma$ and alike

$$\mathcal{A}(t \rightarrow c\gamma) \sim \frac{G_F^2}{16\pi^2} V_{cb} V_{tb}^* \frac{m_b^2}{M_W^2}$$

much smaller!

However, long distance effects from QCD ...

- FCNC transitions $b \rightarrow s$ have been heavily scrutinized experimentally, **in particular** $b \rightarrow s\ell^+\ell^-$

B Physics Anomalies: Experiment

Landscape of Anomalies: Experimental Situation

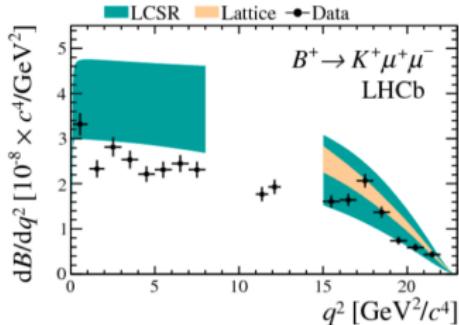
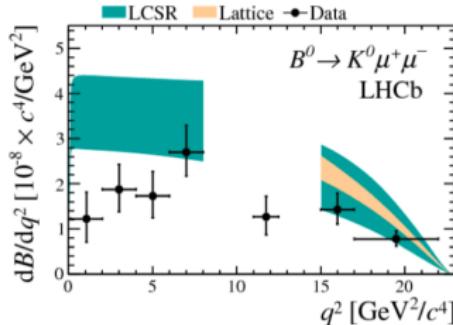
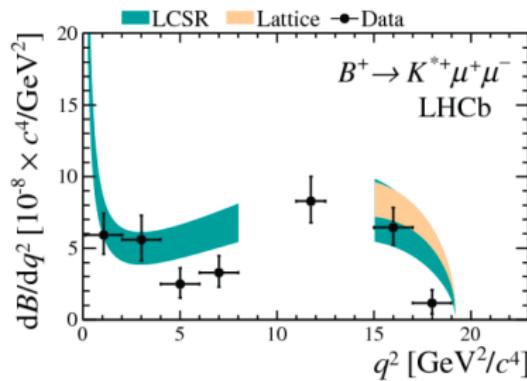
Seven “sets” of anomalies:

- Branching ratios of $b \rightarrow s \mu\mu$ processes
- Angular distributions in $b \rightarrow s \mu\mu$ processes
- Ratios of $b \rightarrow s ee$ versus $b \rightarrow s \mu\mu$
- Ratios of exclusive $b \rightarrow c\tau\bar{\nu}$ versus $b \rightarrow c\ell\bar{\nu}$
- CP Violation: Δa_{CP} in Charm and Kaon ϵ'/ϵ
- Exclusive versus inclusive V_{cb}
- Anomalous magnetic moment of the muon

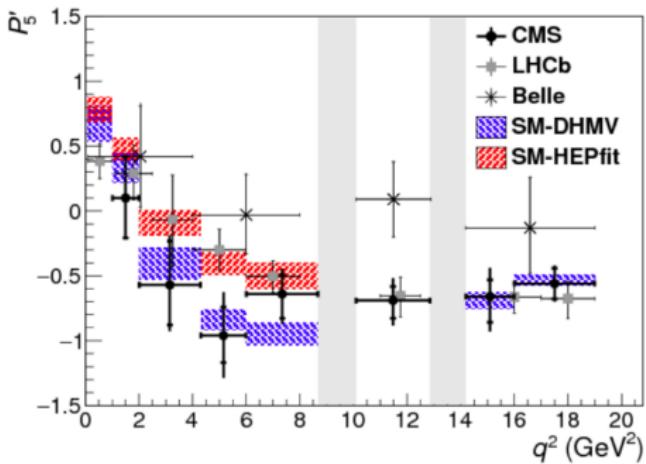
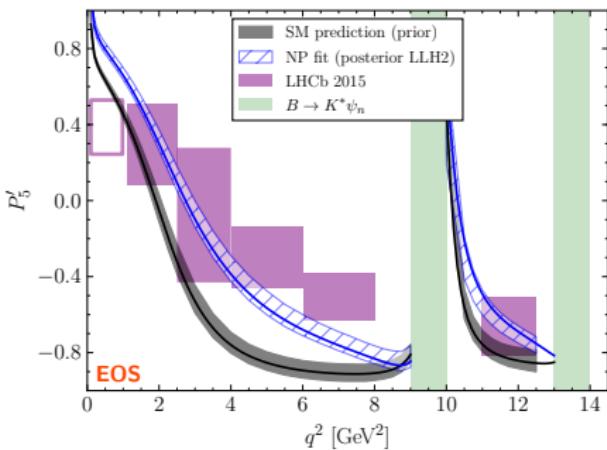
Leptoquark Anomalies

Non-Leptoquark Anomalies

Branching ratios of $b \rightarrow s\mu\mu$ processes

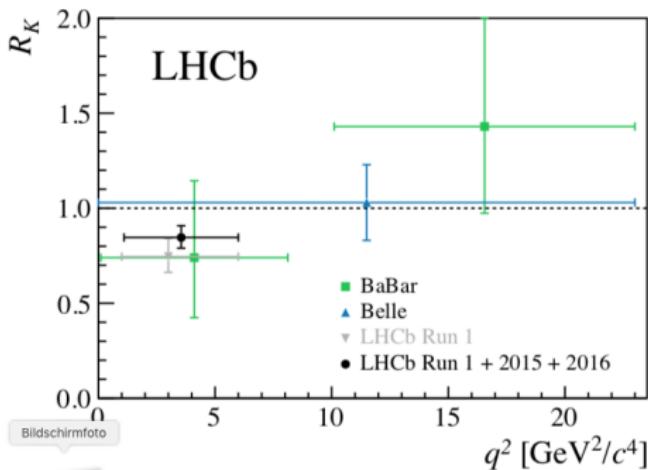
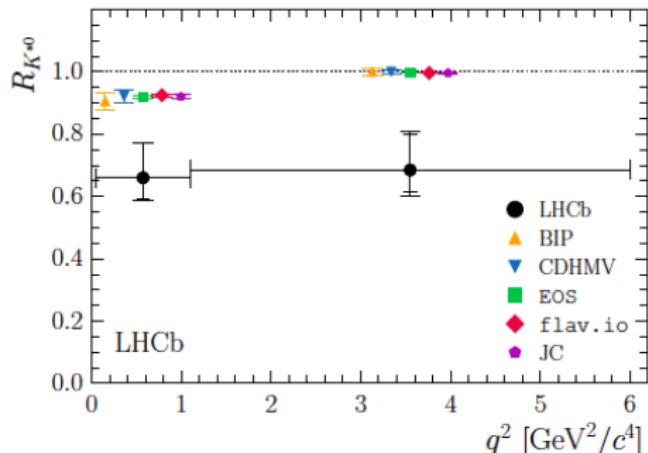


Angular Distributions in $b \rightarrow s\mu\mu$ processes

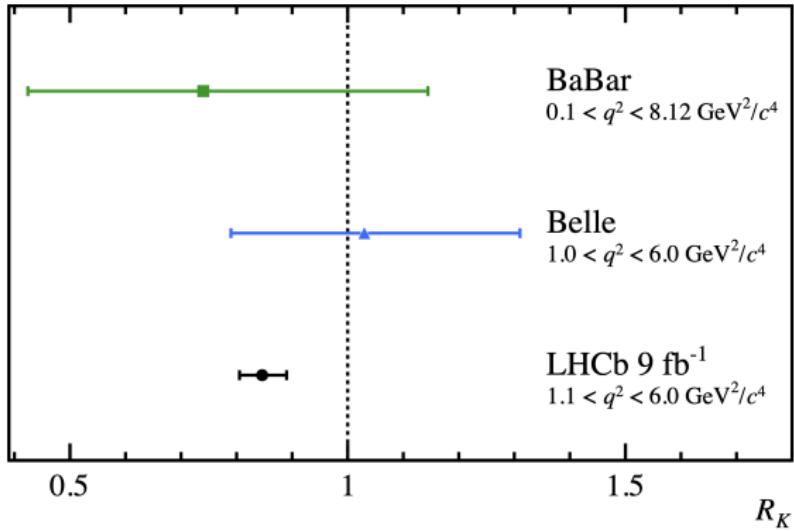


Ratios of $b \rightarrow s e^+ e^-$ and $b \rightarrow s \mu^+ \mu^-$ rates

$$R_K = \frac{\mathcal{B}(B^+ \rightarrow K^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \rightarrow J/\psi (\rightarrow \mu^+ \mu^-) K^+)} \Big/ \frac{\mathcal{B}(B^+ \rightarrow K^+ e^+ e^-)}{\mathcal{B}(B^+ \rightarrow J/\psi (\rightarrow e^+ e^-) K^+)}.$$



New results of this year

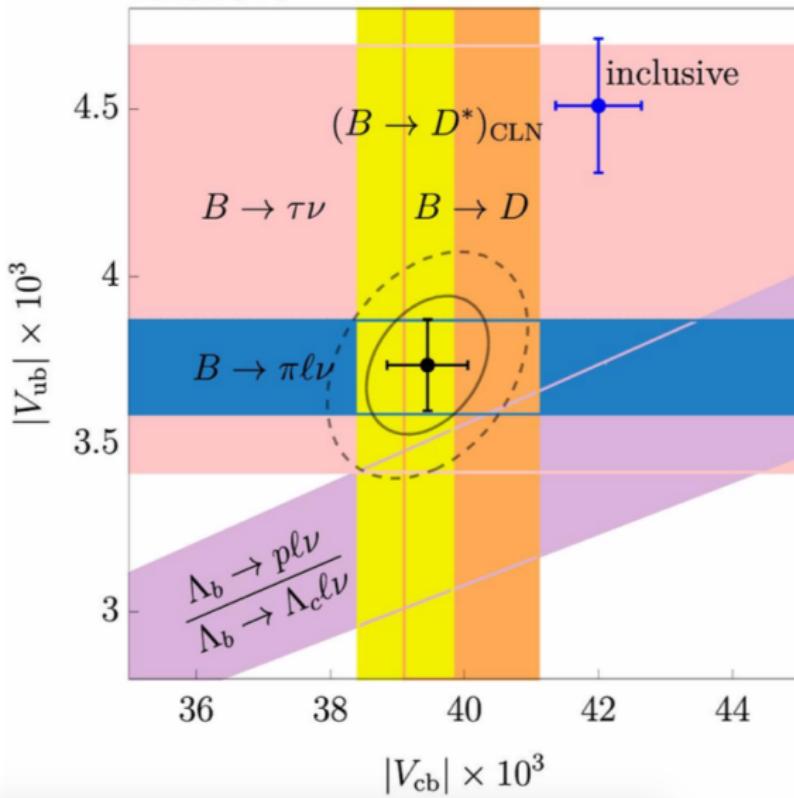


Inclusive versus Exclusive V_{xb}

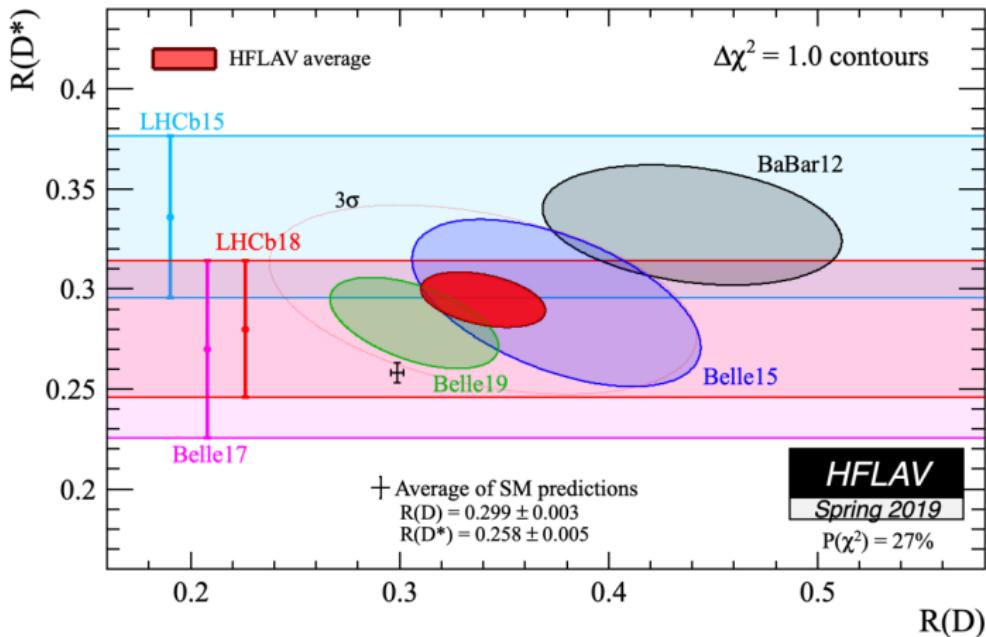
Charged Current Semileptonics are under scrutiny:

- Tensions between inclusive and exclusive determinations of V_{cb}
- Tensions between inclusive and exclusive determinations of V_{ub}

FLAG2018



Charged Currents: $B \rightarrow D^{(*)}\ell\bar{\nu}$



B Physics Anomalies: Theory

Exclusive Determinations of V_{cb}

- Kinematic variable for a heavy quark: Four Velocity v
- Differential Rates

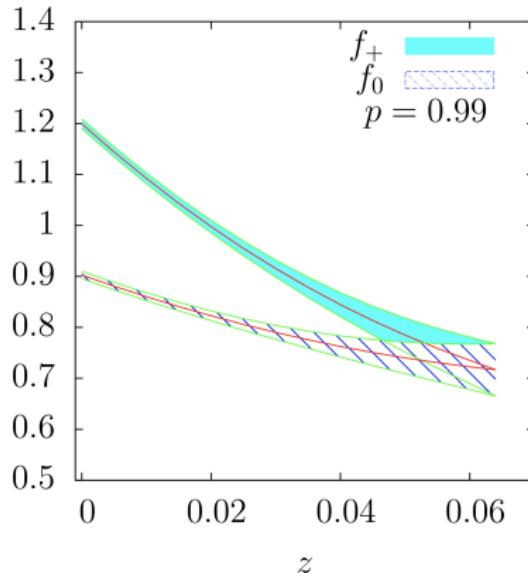
$$\frac{d\Gamma}{d\omega}(B \rightarrow D^* \ell \bar{\nu}_\ell) = \frac{G_F^2}{48\pi^3} |V_{cb}|^2 m_{D^*}^3 (\omega^2 - 1)^{1/2} P(\omega) (\mathcal{F}(\omega))^2$$

$$\frac{d\Gamma}{d\omega}(B \rightarrow D \ell \bar{\nu}_\ell) = \frac{G_F^2}{48\pi^3} |V_{cb}|^2 (m_B + m_D)^2 m_D^3 (\omega^2 - 1)^{3/2} (\mathcal{G}(\omega))^2$$

- with $\omega = vv'$ and
- $P(\omega)$: Calculable Phase space factor
- \mathcal{F} and \mathcal{G} : Form Factors

$B \rightarrow D$ Form Factors from the Lattice

There are results over the full phase space (Milc/Fermilab)



Results off $vv' = 1$ for $B \rightarrow D^*$ are not yet available!

Extracting exclusive V_{cb} from $B \rightarrow D^* \ell \bar{\nu}$

$B \rightarrow D^* \ell \bar{\nu}$

- Use the Lattice value of $\mathcal{F}(1)$
- Extrapolate the data to the point $vv' = 1$
- **This extrapolation depends on the form factor shape!**
- Recent discussion on form factor parametrizations
 - One-parameter form (CLN) seems too simple
(Caprini, Lellouch, Neubert)
 - Recent fits in terms of BGL parametrization
(Boyd, Grinstein Lebed)
 - **No large impact on V_{cb}**

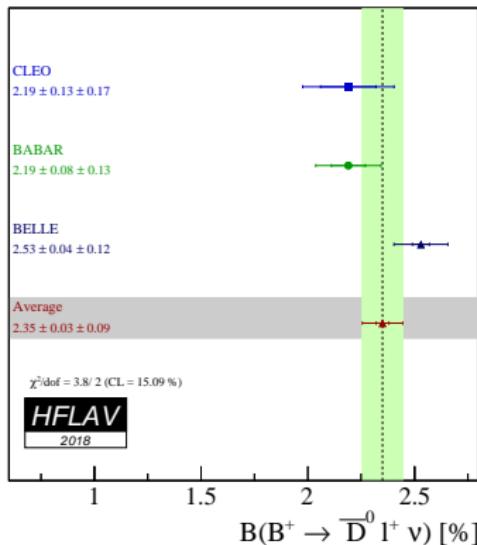
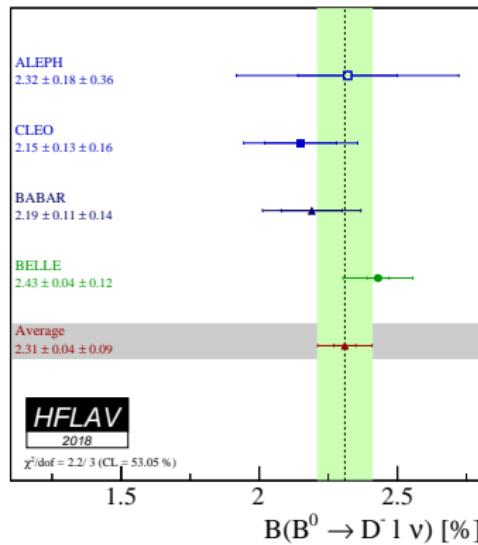
Results for exclusive V_{cb} from $B \rightarrow D^* \ell \bar{\nu}$

$$|V_{cb}| = 39.6_{-1.0}^{+1.1} \times 10^{-3}$$

(Gambino, Jung, Schacht, based on Lattice $\mathcal{F}(1)$)

Extracted V_{cb} is mainly driven by the value of $\mathcal{F}(1)$

$B \rightarrow D \ell \bar{\nu}_\ell$



$$|V_{cb}| = 40.49 \pm 0.97 \times 10^{-3}$$

(D. Bigi, Gambino)

Inclusive V_{cb} Determination

- Standard tool: Heavy Quark Expansion
- Structure of the expansion (@ tree):

$$\begin{aligned} d\Gamma = & d\Gamma_0 + \left(\frac{\Lambda_{\text{QCD}}}{m_b}\right)^2 d\Gamma_2 + \left(\frac{\Lambda_{\text{QCD}}}{m_b}\right)^3 d\Gamma_3 + \left(\frac{\Lambda_{\text{QCD}}}{m_b}\right)^4 d\Gamma_4 \\ & + d\Gamma_5 \left(a_0 \left(\frac{\Lambda_{\text{QCD}}}{m_b}\right)^5 + a_2 \left(\frac{\Lambda_{\text{QCD}}}{m_b}\right)^3 \left(\frac{\Lambda_{\text{QCD}}}{m_c}\right)^2 \right) \\ & + \dots + d\Gamma_7 \left(\frac{\Lambda_{\text{QCD}}}{m_b}\right)^3 \left(\frac{\Lambda_{\text{QCD}}}{m_c}\right)^4 \end{aligned}$$

- Power counting $m_c^2 \sim \Lambda_{\text{QCD}} m_b$

- Γ_0 is the decay of a free quark ("Parton Model")
- Γ_1 vanishes due to Heavy Quark Symmetries
- Γ_2 is expressed in terms of two parameters

$$2M_H\mu_\pi^2 = -\langle H(v) | \bar{Q}_v(iD)^2 Q_v | H(v) \rangle$$

$$2M_H\mu_G^2 = \langle H(v) | \bar{Q}_v \sigma_{\mu\nu} (iD^\mu) (iD^\nu) Q_v | H(v) \rangle$$

μ_π : Kinetic energy and μ_G : Chromomagnetic moment

- Γ_3 two more parameters

$$2M_H\rho_D^3 = -\langle H(v) | \bar{Q}_v(iD_\mu)(ivD)(iD^\mu) Q_v | H(v) \rangle$$

$$2M_H\rho_{LS}^3 = \langle H(v) | \bar{Q}_v \sigma_{\mu\nu} (iD^\mu) (ivD) (iD^\nu) Q_v | H(v) \rangle$$

ρ_D : Darwin Term and ρ_{LS} : Spin-Orbit Term

- Γ_4 and Γ_5 have been computed

Bigi, Uraltsev, Turczyk, TM, ...

Current Status of the calculation:

- Tree level terms up to and **including $1/m_b^5$** known
(Bigi, ThM, Turczyk, Uraltsev, ...)
- $\mathcal{O}(\alpha_s)$ and full $\mathcal{O}(\alpha_s^2)$ for the leading term known
(Melnikov, Czarnecki ...)
- $\mathcal{O}(\alpha_s)$ for the μ_π^2/m_b^2 and μ_G^2/m_b^2 known
(Becher, Boos, Lunghi, Alberti, Gambino, Nandi, ThM, Pivovarov, Rosenthal ...)
- **First results on α_s/m_b^3 corrections**
(ThM, Pivovarov 1907.09187)
- Modelling for the HQE matrix elements beyond $1/m^3$
(ThM, Uraltsev, Heinonen, ...)

Strategy to extract V_{cb}

- Based on the HQE for the inclusive rates and for moments of spectra
- (Cut) moments of the charged lepton energy, hadronic energy and hadronic invariant mass spectra
- Extract the HQE parameters from this data
- Obtain V_{cb} from the total semileptonic rate

Problem: Number of HQE parameters in higher orders!

- 4 up to $1/m^3$
- 13 up to $1/m^4$ (tree level)
- 31 up to order $1/m^5$ (tree level)
- Factorial Proliferation

Result of the Fit in the kinetic scheme

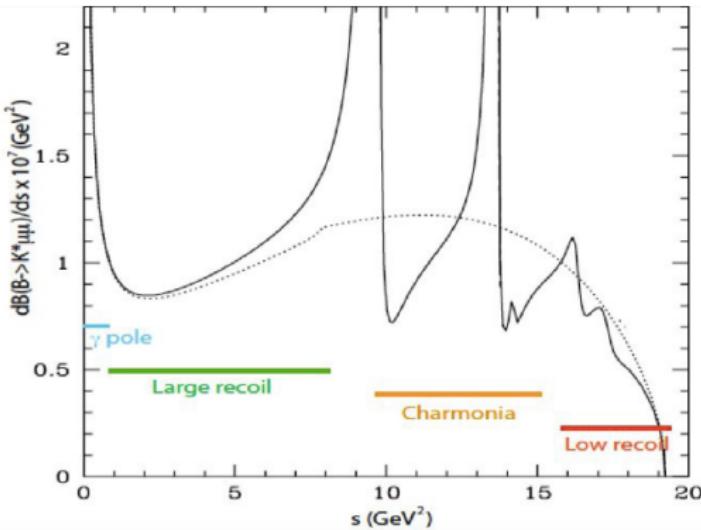
(Gambino, Schwanda 2014)

m_b^{kin}	m_c	μ_π^2	ρ_D^3	μ_G^2	ρ_{LS}^3	$BR_{cl\nu}(\%)$	$10^3 V_{cb} $
4.541	0.987	0.414	0.154	0.340	-0.147	10.65	42.42
0.023	0.013	0.078	0.045	0.066	0.098	0.16	0.86

FCNC Decays

FCNC Semileptonics: $B \rightarrow K^{(*)}\ell^+\ell^-$

What is the problem?



How to compute $\langle B | H_{\text{eff}} | K^{(*)}\ell^+\ell^- \rangle$?

Hadronic matrix elements

Decay Amplitude for $B \rightarrow K^{(*)}\ell\ell$ (Schematically):

$$\mathcal{A}(B \rightarrow K^{(*)}\ell\ell) = \mathcal{N} \left[(C_9 L_V^\mu + C_{10} L_A^\mu) \mathcal{F}_\mu - \frac{L_V^\mu}{s} (C_7 \mathcal{F}_{T,\mu} + \mathcal{H}_\mu) \right]$$

Hadronic matrix elements are the limiting factors for precise predictions!

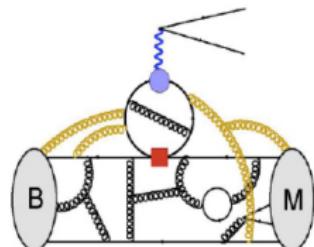
- Local matrix elements: Form factors ($M = K, K^*$):

$$\mathcal{F}_\mu^{B \rightarrow M}(k, q) \equiv \langle M(k) | \bar{s} \gamma_\mu P_L b | \bar{B}(q+k) \rangle ,$$

$$\mathcal{F}_{T,\mu}^{B \rightarrow M}(k, q) \equiv \langle M(k) | \bar{s} \sigma_{\mu\nu} q^\nu P_R b | \bar{B}(q+k) \rangle ,$$

- Non-local matrix elements

$$\mathcal{H}_\mu^{B \rightarrow M}(k, q) \equiv i \int d^4x e^{iq \cdot x} \langle M(k) | T \{ j_\mu^{\text{em}}(x), (C_1 \mathcal{O}_1 + C_2 \mathcal{O}_2)(0) \} | \bar{B}(q+k) \rangle$$

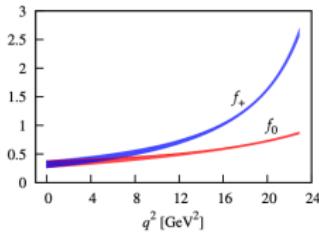
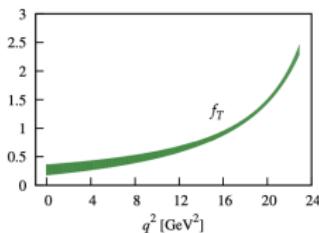


Form Factors

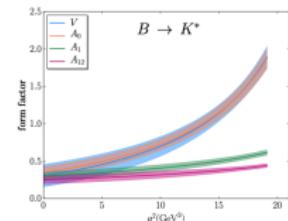
relatively well under control:

- Lattice simulations at high s
(i.e. low hadronic recoil)
- Light-cone Sum-rule
estimates at $s \sim 0$
- Inter-/Extrapolation using
the z expansion

Uncertainty $\sim 10\%$

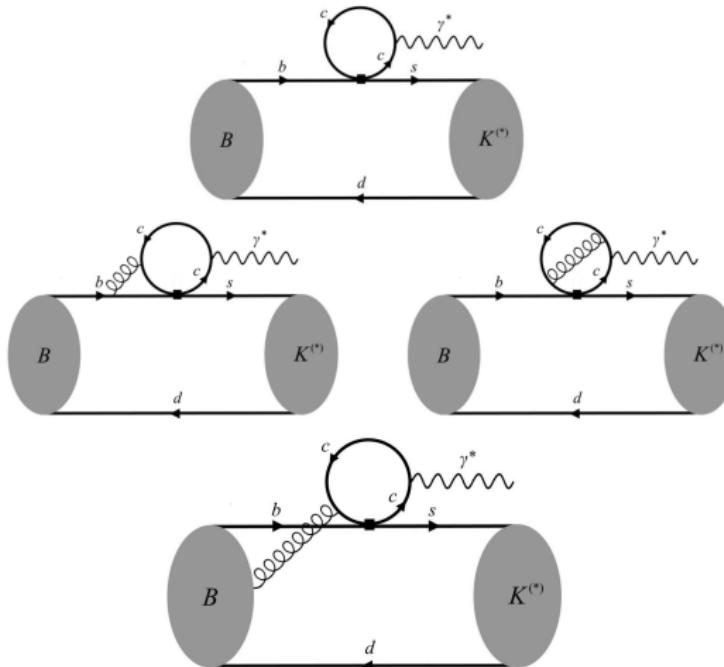


(HPQCD 2013)



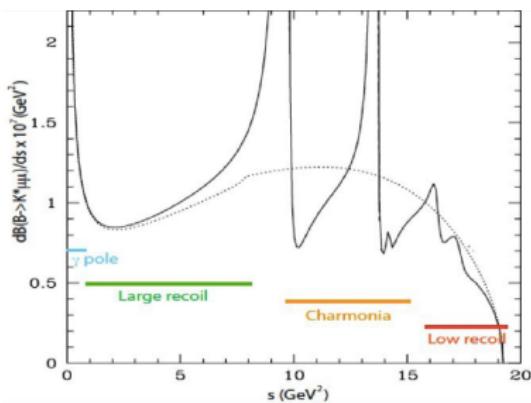
(Horgan, Liu, Meinel, Wingate, 2013)

Non-Local contributions: Charm loop Contribution



Options for the charm loop:

- Local Expansion for $s \ll m_c^2$
Expansion parameter s/m_c^2
Valid in the pole region
(Buchalla, Isidori, Rey 1997, Voloshin 1996)
- Light-Cone expansion for $4m_c^2 - s \ll \Lambda_{\text{QCD}}^2$
Expansion parameter $\Lambda_{\text{QCD}}/\sqrt{4m_c^2 - s}$
Valid for $0 \leq s \leq 4m_c^2$
- Narrow Resonances: Approximate by
 $B \rightarrow (J/\psi, \psi') K^{(*)} \rightarrow \ell^+ \ell^- K^{(*)}$
Valid for $4m_c^2 \leq s \leq M_{\psi'}^2$
- Above $s \leq M_{\psi'}^2$: difficult! (Grinstein, Pirjol, 2004)



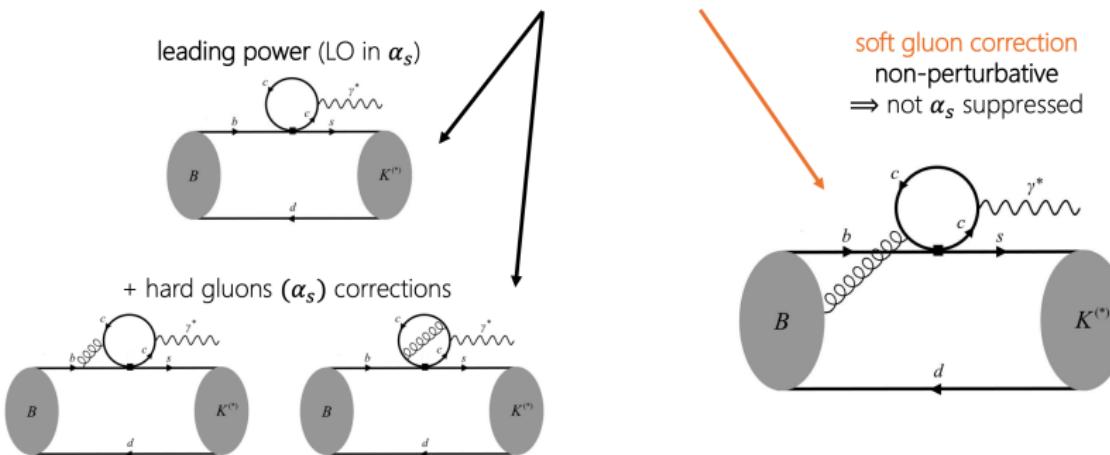
This is still the largest source of uncertainties!

.. to give you an impression

Interesting region for hunting anomalies: $0 \leq s \leq 4m_c^2$
 Decompose the non-local matrix element into helicity components

$$\mathcal{H}_\mu^{B \rightarrow K} = S_\mu^P \mathcal{H}_0^{B \rightarrow K} \quad \text{and} \quad \mathcal{H}_\mu^{B \rightarrow K^*} \sum S_\mu^\lambda \mathcal{H}_0^{B \rightarrow K^*}, \quad \lambda = \perp, \parallel, 0$$

$$\mathcal{H}_\lambda(q^2) = C_\lambda(q^2) \mathcal{F}_\lambda(q^2) + \tilde{C}_\lambda(q^2) \mathcal{V}_\lambda(q^2) + \dots$$



Light Cone OPE for \mathcal{V}_λ :

$$\langle 0 | \bar{d}(x) G_{\alpha\beta}(uy) h_v(0) | B(v) \rangle$$

$$= \frac{f_B m_B}{4} \text{Tr} \left\{ \gamma_5 P_+ \left[(v_\alpha \gamma_\beta - v_\beta \gamma_\alpha) (\Psi_A - \Psi_V) - i \sigma_{\alpha\beta} \Psi_V - (y_\alpha v_\beta - y_\beta v_\alpha) \frac{\mathbf{X}_A}{v \cdot y} + (y_\alpha \gamma_\beta - y_\beta \gamma_\alpha) \frac{\mathbf{Y}_A}{v \cdot y} \right] \right\} (x, uy)$$

(Khodjamirian, M, Pivovarov, Wang 2010)

$$= \frac{f_B m_B}{4} \text{Tr} \left\{ \gamma_5 P_+ \left[(v_\alpha \gamma_\beta - v_\beta \gamma_\alpha) (\Psi_A - \Psi_V) - i \sigma_{\alpha\beta} \Psi_V - (y_\alpha v_\beta - y_\beta v_\alpha) \frac{\mathbf{X}_A}{v \cdot y} + (y_\alpha \gamma_\beta - y_\beta \gamma_\alpha) \frac{\mathbf{W} + \mathbf{Y}_A}{v \cdot y} \right. \right. \\ \left. \left. - i \epsilon_{\alpha\beta\sigma\rho} y^\sigma v^\rho \gamma_5 \frac{\tilde{\mathbf{X}}_A}{v \cdot y} + i \epsilon_{\alpha\beta\sigma\rho} y^\sigma \gamma^\rho \gamma_5 \frac{\tilde{\mathbf{Y}}_A}{v \cdot y} - (y_\alpha v_\beta - y_\beta v_\alpha) y_\sigma \gamma^\sigma \frac{\mathbf{W}}{(v \cdot y)^2} + (y_\alpha \gamma_\beta - y_\beta \gamma_\alpha) y_\sigma \gamma^\sigma \frac{\mathbf{Z}}{(v \cdot y)^2} \right] \right\} (x, uy)$$

(Gubernari, van Dyk, Virto 2020)

Additional contributions up to twist 4

Transition	$\tilde{\mathcal{V}}(q^2 = 1 \text{ GeV}^2)$	This work	Ref. [11]
$B \rightarrow K$	$\tilde{\mathcal{A}}$	$(+4.9 \pm 2.8) \cdot 10^{-7}$	$(-1.3_{-0.7}^{+1.0}) \cdot 10^{-4}$
	$\tilde{\mathcal{V}}_1$	$(-4.4 \pm 3.6) \cdot 10^{-7} \text{ GeV}$	$(-1.5_{-2.5}^{+1.5}) \cdot 10^{-4} \text{ GeV}$
$B \rightarrow K^*$	$\tilde{\mathcal{V}}_2$	$(+3.3 \pm 2.0) \cdot 10^{-7} \text{ GeV}$	$(+7.3_{-7.9}^{+14}) \cdot 10^{-5} \text{ GeV}$
	$\tilde{\mathcal{V}}_3$	$(+1.1 \pm 1.0) \cdot 10^{-6} \text{ GeV}$	$(+2.4_{-2.7}^{+5.6}) \cdot 10^{-4} \text{ GeV}$

This work = Gubernari, van Dyk, Virto 2020, Model for the functions: Braun, Ji Manashov, 2017

Ref[11] = Khodjamirian, M, Pivovarov, Wang 2010, simple exponential model

Factor more than 100! ... Why?

- **Cancellations** between the various contributions, which was not present in KMPW2010, may be model dependent?
- More recent calculations of the **normalization constants** of the $\bar{q}Gh_\nu$ LCDA

$$\lambda_E^2 \sim \langle 0 | g_s \bar{q} \gamma_0 (\vec{\gamma} \cdot \vec{E}) \gamma_5 h_\nu | B(v) \rangle$$

$$\lambda_H^2 \sim \langle 0 | g_s \bar{q} (\vec{\sigma} \cdot \vec{B}) \gamma_5 h_\nu | B(v) \rangle$$

	Neubert Grozin 96	Nishikawa/Tanaka 14	Rahimi Wald 20
λ_E^2 (GeV ²)	0.11 ± 0.06	0.03 ± 0.02	0.01 ± 0.01
λ_H^2 (GeV ²)	0.18 ± 0.07	0.06 ± 0.03	0.15 ± 0.05

$(\lambda_E^2 = \lambda_E^2(\mu = 1 \text{ GeV}), \lambda_H^2 = \lambda_H^2(\mu = 1 \text{ GeV}))$

- Estimates are based on **different!** QCD sum rules

... to take home:

- Main source of remaining uncertainties are **hadronic matrix elements**
- Heavy Quark Methods have helped, but we are now in a **precision era**
- Lattice QCD methods made enormous progress towards **phenomenologically useful results**
- There will be an enormous amount of data in the **comming years!**

“New Physics” Interpretations

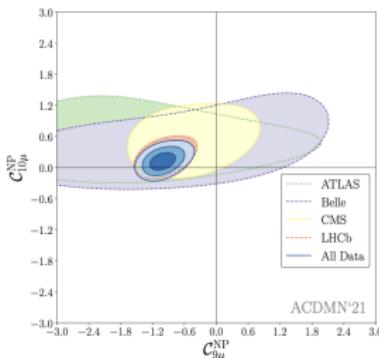
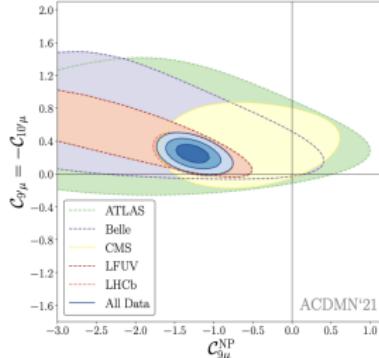
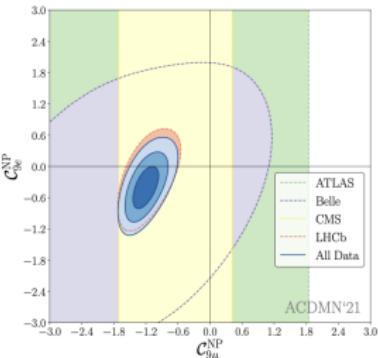
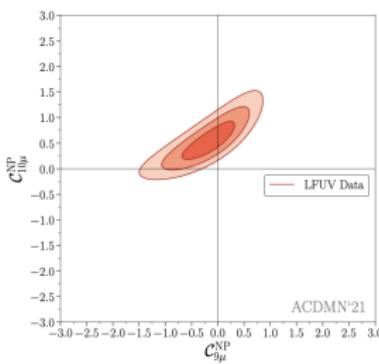
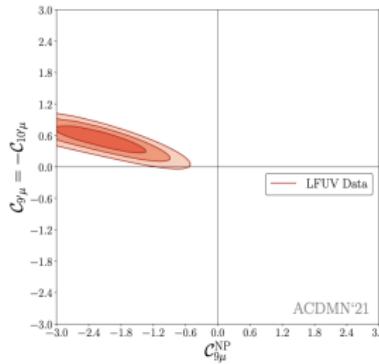
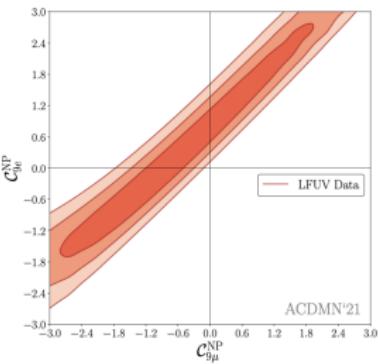
Beyond the Standard Model

Current Highlight: “*B*-Anomalies”

- Partial rates
- Angular Distributions
- Lepton Universality

The EffTh approach is very versatile:

- Modification of Wilson coefficients relative to the SM values
- Additional Operators not present in the SM
e.g. Operators with right-handed currents, usually marked with a prime
- ... but it cannot tell you much about the details of BSM physics

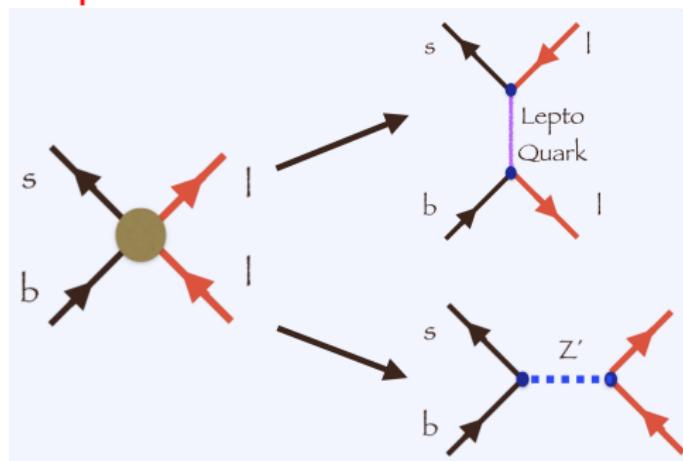


(Alguero et al., 2104.08921)

Observations from the fit of the Wilson coefficients:

(Alguero et al., 2104.08921)

- Viable possibility: Right handed contributions O'_9 and O'_{10} for muons
- LFU violation with $C_{9,\mu} = -C_{10,\mu}$ requires also LF-universal NP contributions
- Move on to simplified models:



Simplified Models

For the B anomalies: Two possibilities

- Leptoquark models
 - Leptoquark masses about 3 TeV
 - scalar and vector leptoquarks
 - Scenarios with leptoquark(s) can fit all anomalies
 - Searches at the LHC

$(SU(3)_c, SU(2)_w, U(1)_Y)$	Spin	$R_{D(*)}$	$R_{K(*)}$	$R_{D(*)}$ and $R_{K(*)}$
$S_3 \equiv (\bar{\mathbf{3}}, \mathbf{3}, 1/3)$	0	x	✓	x
$R_2 \equiv (\mathbf{3}, \mathbf{2}, 7/6)$	0	✓	x	x
$\tilde{R}_2 \equiv (\mathbf{3}, \mathbf{2}, 1/6)$	0	✓	x	x
$S_1 \equiv (\bar{\mathbf{3}}, \mathbf{1}, 1/3)$	0	✓	x	x
$U_3 \equiv (\mathbf{3}, \mathbf{3}, 2/3)$	1	x	✓	x
$U_1 \equiv (\mathbf{3}, \mathbf{1}, 2/3)$	1	✓	✓	✓

- Extended gauge group (Z') models

- New Matter particles with masses ~ 3 TeV
- Additional Gauge Bosons with masses \sim TeV
- ... can also fit all anomalies
- Searches at the LHC

	generations	$SU(3)_C$	$SU(2)_1$	$SU(2)_2$	$U(1)_Y$
ϕ	1	1	1	2	1/2
Φ	1	1	2	2	0
q_L	3	3	1	2	1/6
u_R	3	3	1	1	2/3
d_R	3	3	1	1	-1/3
ℓ_L	3	1	1	2	-1/2
e_R	3	1	1	1	-1
$Q_{L,R}$	n_{VL}	3	2	1	1/6
$L_{L,R}$	n_{VL}	1	2	1	-1/2

(Boucenna et al.)

Towards a BSM Theory ...

Problems with simplified models

- Observations mainly in the third generation:
What is the flavour structure of the couplings?
- How can a “UV complete” theory be constructed?
- Is this theory compatible with the observations in the first and second generation?

Towards a BSM Theory ...

Problems with simplified models

- Observations mainly in the third generation:
What is the flavour structure of the couplings?
- How can a “UV complete” theory be constructed?
- Is this theory compatible with the observations in the first and second generation?

A lot is ahead of us

... and there is some hope
... due to the persistence of the *B* anomalies

Ship of Flavour Theory

Ship of Flavour Theory

