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Introduction

Schwarzian derivative
The Schwarzian derivative, defined by the relation

{t , τ} =

...
t
ṫ
− 3

2

(
ẗ
ṫ

)2

, ṫ = ∂τ t ,

has wide range of applications in mathematics, such as complex analysis and
differential equations, and in physics. In particular, Schwarzian appears in the action
that describes the d=2 Jackiw-Teitelboim gravity at the boundary

S = −1
2

∫
dτ {t , τ} ,

which is important to study holographic correspondence (with Sachdev-Ye-Kitaev
model in this case). Interesting property of the Schwarzian action is that its equation
of motion is proportional to the derivative of the Schwarzian:

δS = 0 ⇒ ∂τ {t , τ} = 0.

In conformal field theory, Schwarzian emerges when conformal transformations of the
energy-momentum tensor are studied,

T (z) =

(
dz̃
dz

)2

T̃ (z̃) + {z̃, z} .

N. Kozyrev (BLTP JINR, Dubna) Schwarzians Aspects of Symmetry, 12.11.21 2 / 24



Introduction

Main property of Schwarzians

Studies in conformal field theory suggest that the structure of appearing object {z̃, z}
is completely fixed by the conformal symmetry, and it would be desirable to find
simpler way to compute such quantities. Also, in superconformal field theories,
analogous inhomogeneous terms appear in the transformation laws of current
superfield JN , which generates N -extended superconformal transformations, and
they can be considered as supersymmetric extensions of the Schwarzian derivative. It
would be desirable to find a way to compute them, too, and obtain the supersymmetric
extension of the Schwarzian action.

In this talk, we apply the method of nonlinear realizations to compute Schwarzians
and find their supersymmetric analogs, using the known property of Schwarzian
derivative — its invariance with respect to SL(2,R) transformations:{

t ′, τ
}

= {t , τ} iff t ′ =
at + b
ct + d

,

with SL(2,R) being a finite-dimensional subgroup of conformal group in d = 1. This
suggests that the method of nonlinear realizations should be applied to SL(2,R) to
obtain this derivative.
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Schwarzian from nonlinear realizations

The sl(2,R) algebra and Cartan forms

The sl(2,R) commutation relations can be written as

i [D,P] = P, i [D,K ] = −K , i [K ,P] = 2D.

where hermitean generators P, D, K can be identified with time shifts, dilatations and
conformal boosts, respectively. Let us parameterize the SL(2,R) group element just
as done in standard conformal mechanics.

g = eitPeizK eiuD,

where t , z, u are, so far, independent parameters. The transformations of parameters,
induced by left multiplication, g′ = g0g, in infinitesimal form read

g0 = eiãP eib̃D eic̃K ⇒ δt = ã + b̃t + c̃ t2, δu =
d
dt
δt , δz =

1
2

d
dt
δu − d

dt
δt z.

The Cartan forms, strictly invariant with respect to left multiplication g′ = g0g, are
Ω = g−1dg, or

Ω = iωPP + iωDD + iωK K , ωP = e−udt , ωD = du − 2zdt , ωK = eu
(

dz + z2dt
)
.
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Schwarzian from nonlinear realizations

Schwarzian as projection of the K -form

Then standard superconformal mechanics are considered, t is taken as time, and u
and z are treated as functions of t . When, one can enforce covariant condition
ωD = 0, which would express z in terms of derivative of u, z = 1/2du/dt , and use the
remaining forms to make up the action of conformal mechanics

Scf = −
∫
ωK − g2

∫
ωP =

∫
dt

[(
dx
dt

)2

− g2

x2

]
, x = eu/2.

Let us, however, follow different path. Let us consider t , u, z as functions of some inert
parameter τ ; then, using the invariance of ωP , ωD and ωK , one can enforce conditions

ωP = dτ, ωD = 0 ⇒ eu = ṫ , z =
1
2

e−u u̇ =
ẗ

2ṫ2
.

When the remaining form ωK , remarkably, turns out to be proportional to the
Schwarzian:

ωK =
1
2

[
ü − 1

2
u̇2
]

dτ =
1
2

[ ...
t
ṫ
− 3

2

(
ẗ
ṫ

)2
]

dτ, S = −
∫
ωK .
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Schwarzian from nonlinear realizations

How to construct supersymmetric Schwarzians

The constuction described above would be straightforward to generalize to
supersymmetric case. Then we should deal with some finite subalgebra of the whole
superconformal algebra, which extends three mentioned sl(2) generators P, D, K with
some supercharges Q i , superconformal charges S i and, possibly, internal symmetry
generators J ij . Constructing the nonlinear realization of the respective group, we
should treat all the group parameters as superfields that depend on some inert
superspace coordinates τ , θi . Then the conditions

ωP = 4τ,
(
ωQ
)i

= dθi , ωD = 0,

where the forms 4τ and dθi being invariant with respect to N -extended
supersymmetry, should express the remaining

(
ωS
)i , ωK ,

(
ωJ
)ij in terms of super

Schwarzians and their derivatives.

Let us show how this program works in the case of N=2 supersymmetry.
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N=2 Schwarzian

The su(1,1|1) superalgebra
We are going to reconstruct N=2 Schwarzian, starting from su(1, 1|1)
superconformal algebra: su(1, 1|1)

i [D,P] = P, i [D,K ] = −K , i [K ,P] = 2D,{
Q,Q

}
= 2P,

{
S,S

}
= 2K ,

{
Q,S

}
= −2D + 2J,

{
Q,S

}
= −2D − 2J,

i [J,Q] =
1
2

Q, i
[
J,Q

]
= −1

2
Q, i [J,S] =

1
2

S, i
[
J,S

]
= −1

2
S,

i [D,Q] =
1
2

Q, i
[
D,Q

]
=

1
2

Q, i [D,S] = −1
2

S, i
[
D,S

]
= −1

2
S,

i [K ,Q] = −S, i
[
K ,Q

]
= −S, i [P,S] = Q, i

[
P,S

]
= Q.

Here, P, D, K are Hermitean, J† = −J and Q† = Q, S† = S. We define the group
element, in analog to the bosonic case, just as done in superconformal mechanics:

g = eitP eξQ+ξ̄Q eψS+ψ̄SeizK eiuDeφJ

Parameters of the group are superfields that depend on superconformally inert
coordinates of some superspace τ (even), θ, θ̄ (odd). The forms, constructed of τ , θ, θ̄
and invariant with respect to N=2 supersymmetry, are

4τ = dτ + i(d θ̄θ + dθθ̄), dθ d θ̄, δτ = i
(
εθ̄ + ε̄θ

)
, δθ = ε, δθ̄ = ε̄.

They can be obtained by studying standard coset realization of supersymmetry
g̃ = eiτP eθQ+θ̄Q .
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N=2 Schwarzian

The constraints
Using “boundary” supersymmetry invariant forms, one can define covariant derivatives
with respect to τ , θ, θ̄:

d = dτ
∂

∂τ
+ dθ

∂

∂θ
+ d θ̄

∂

∂θ̄
= 4τDτ + dθD + d θ̄D ⇒

Dτ = ∂τ , D =
∂

∂θ
− iθ̄

∂

∂τ
, D =

∂

∂θ̄
− iθ

∂

∂τ
,

{
D,D

}
= −2i∂τ .

Equipped with these instruments, one can calculate the Cartan forms

g−1dg = iωPP + ωQQ + ω̄QQ + iωDD + ωJJ + ωSS + ω̄SS + iωK K

and find consequences of conditions ωP = 4τ , ωQ = dθ, ω̄Q = d θ̄:

ωP = e−u4t = e−u (dt + i
(
d ξ̄ξ + dξξ̄

))
= 4τ ⇒


ṫ + i

(
˙̄ξξ + ξ̇ξ̄

)
= eu,

Dt + iDξ ξ̄ = 0,
Dt + iDξ̄ ξ = 0,{

ωQ = e−
1
2 (u−iφ) (dξ + ψ4t) = dθ

ω̄Q = e−
1
2 (u+iφ)

(
d ξ̄ + ψ̄4t

)
= d θ̄

⇒


ξ̇ + euψ = 0, ˙̄ξ + euψ̄ = 0
Dξ = e

1
2 (u−iφ), Dξ̄ = e

1
2 (u+iφ)

Dξ = 0 Dξ̄ = 0.
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N=2 Schwarzian

The N=2 Schwarzian
The remaining condition ωD = 0, if others are taken into account, implies

ωD = du − 2z4t − 2i(dξψ̄ + d ξ̄ψ) = 0 ⇒ u̇ − 2euz = 0.

Then, after some calculations, the remaining Cartan forms ωJ , ωK , ωS , ω̄S ,

ωJ = dφ− 2ψψ̄4t + 2(d ξ̄ψ − dξψ̄),

ωK = eu
(

dz + z24t − i(ψ dψ̄ + ψ̄ dψ) + 2iz (dξ ψ̄ + d ξ̄ψ)
)
,

ωS = e
u
2 +i φ2

(
dψ − iψψ̄dξ + z (dξ + ψ4t)

)
,

ω̄S = e
u
2−i φ2

(
dψ̄ + iψψ̄d ξ̄ + z

(
d ξ̄ + ψ̄4t

))
can be written in terms of just one superfield quantity S and its derivatives, with some
projections vanishing:

ωJ = iS4τ, ωK = −1
2

dθDS +
1
2

d θ̄DS +
1
4

(
i
[
D,D

]
S − S2

)
4τ,

ωS = −1
2

dθ S − i
2
4τ DS, ω̄S =

1
2

d θ̄S +
i
2
4τ DS,

S =
Dξ̇
Dξ
− D ˙̄ξ

Dξ̄
− 2i

ξ̇ ˙̄ξ

DξDξ̄
= SN=2, which is N=2 Schwarzian.
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N=2 Schwarzian

su(1,1|1) Maurer-Cartan equations
The structure of the Cartan forms in N=2 case raises the question why this happens
and if there a simpler means to show that the forms should have such a structure.
Indeed, it is known that Cartan form Ω = g−1dg satisfies so called Maurer-Cartan
equation. We prefer to write it down in form that incorporates two commuting
differentials d1, d2

d2Ω(d1)− d1Ω(d2) = [Ω(d1),Ω(d2)] .

Substitution Ω(di ) = g−1dig turns this relation into identity. At the same time, if
general expression for Ω

Ω = iωPP + ωQQ + ω̄QQ + iωDD + ωJJ + ωSS + ω̄SS + iωK K

is substituted, it would be possible to find the relations structure functions of the forms
satisfy.
Let us employ conditions

ωP = 4τ, ωQ = dθ, ω̄Q = d θ̄, ωD = 0

at this level. All other forms should be written as

ωJ = i4τS + dθΦ− d θ̄Φ, ωK = 4τC + dθΣ− d θ̄Σ,

ωS = 4τ Ψ + dθA + d θ̄B, ω̄S = 4τ Ψ + dθB + d θ̄A.

These should be substituted into Maurer-Cartan equations.
N. Kozyrev (BLTP JINR, Dubna) Schwarzians Aspects of Symmetry, 12.11.21 10 / 24



N=2 Schwarzian

Solution to Maurer-Cartan equations
Maurer-Cartan equation, which comes with P generator, reads

d2ω1P − d1ω2P = −
(
ω1Pω2D − ω1Dω2P

)
+ 2i

(
ω1Qω̄2Q + ω̄1Qω2Q

)
.

Upon substitution ωP = 4τ , ωQ = dθ, ω̄Q = d θ̄, ωD = 0 it is satisfied identically due to
4τ = dτ + i

(
dθθ̄ + d θ̄θ

)
. dωQ equation, however, has nontrivial consequences:

d2ω1Q − d1ω2Q = ω1Pω2S − ω2Pω1S +
1
2
(
ω1Dω2Q − ω2Dω1Q

)
− i

2
(
ω1Jω2Q − ω2Jω1Q

)
⇒

d2d1θ − d1d2θ = 0 =
(
41τ d2θ −42τd1θ

)(
A +

1
2
S
)

+
(
41τ d2θ̄ −42τd1θ̄

)
B +

+id1θ d2θΦ +
i
2
(
d1θ̄ d2θ − d2θ̄ d1θ

)
Φ.

Just one equation is strong enough to show that the form ωS can not have a d θ̄ -
projection, and dθ and d θ̄ projections of ωJ are absent. Also it relates dθ projection of
ωS and 4τ projection of ωJ : A = −1/2S. With these results, one can obtain from dωJ

equation
d2ω1J − d1ω2J = −2

(
ω1Qω̄2S − ω̄1Qω2S − ω1Sω̄2Q + ω̄1Sω2Q

)
that Ψ = − i

2 DS, Ψ = i
2 DS, and ωJ , ωS , ω̄S can be written entirely in terms of S.
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N=2 Schwarzian

Solution to Maurer-Cartan equations
Continuing down this road, one can check that dωD equation

d2ω1D − d1ω2D = −2
(
ω1Pω2K − ω1Kω2P

)
− 2i

(
ω1Qω̄2S + ω̄1Qω2S + ω1Sω̄2Q + ω̄1Sω2Q

)
determines portions of ωK form, Σ = − 1

2 DS, Σ = − 1
2 DS, and the function C can be

determined by analyzing ωS equation

d2ω1S − d1ω2S = −ω1Kω2Q + ω2Kω1Q −
1
2
(
ω1Dω2S − ω2Dω1S

)
− i

2
(
ω1Jω2S − ω2Jω1S

)
and one obtains the already known structure of Cartan forms

ωJ = iS4τ, ωK = −1
2

dθDS +
1
2

d θ̄DS +
1
4

(
i
[
D,D

]
S − S2

)
4τ,

ωS = −1
2

dθ S − i
2
4τ DS, ω̄S =

1
2

d θ̄S +
i
2
4τ DS.

It is now matter of straightforward calculation to check that dωK equation

d2ω1K − d1ω2K =
(
ω1Kω2D − ω1Dω2K

)
+ 2i

(
ω1Sω̄2S + ω̄1Sω2S

)
is satisfied, leaving no constraints on S. It could be found only by studying Cartan
forms within given group parametrization.
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N=2 Schwarzian

N=2 Schwarzian action
With S = SN=2 being the sole invariant appearing in the forms, it is natural to assume
that the superfield Schwarzian action is given by the integral

SN2schw = − i
2

∫
dτ dθ d θ̄SN=2.

Keeping in mind structure of the forms, one can write it as

SN2schw = −1
2

∫
ωJ ∧ ωQ ∧ ω̄Q = i

∫
ωP ∧ ωS ∧ ω̄Q = −i

∫
ωP ∧ ωQ ∧ ω̄S .

As an integral over odd variables is defined as
∫

dτdθd θ̄ =
∫

dτDD, one can evaluate
the component action with the help of expression for ωK :

SN2schw = −1
2

∫
dτ

[
∂2
τ

(
ṫ + iξ̇ξ̄ + i ˙̄ξξ

)
ṫ + iξ̇ξ̄ + i ˙̄ξξ

− 3
2

(
∂τ
(
ṫ + iξ̇ξ̄ + i ˙̄ξξ

))2(
ṫ + iξ̇ξ̄ + i ˙̄ξξ

)2
+

+2i
ξ̈ ˙̄ξ + ¨̄ξξ̇(

ṫ + iξ̇ξ̄ + i ˙̄ξξ
)2
− 1

2
φ̇2 − 2

φ̇ ξ̇ ˙̄ξ

ṫ

]
.

Here, we denote the superfields and their first components with the same letter.
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N=3 Schwarzian

osp(3|2) superalgebra

The construction of N=3 Schwarzian is based on osp(3|2) superalgebra

i [D,P] = P, i [D,K ] = −K , i [K ,P] = 2D,

{Qi ,Qj} = 2δijP, {Si ,Sj} = 2δijK , {Qi ,Sj} = −2δijD − εijk Jk ,

i [D,Qi ] =
1
2

Qi , i [D,Si ] = −1
2

Si , i [K ,Qi ] = −Si , i [P,Si ] = Qi ,

i [Ji ,Qj ] = εijk Qk , i [Ji ,Sj ] = εijk Sk , i [Ji , Jj ] = εijk Jk .

All generators here are Hermitean, i, j . . . = 1, 2, 3, and εijk = ε[ijk ], ε123 = 1. The group
element can be parameterized just as before,

g = eitP eξi Qi eψj Sj eizK eiuDeiφi Ji ,

where group parameters are superfields that depend on τ , θi coordinates of
superspace. The τ , θi are completely inert with respect to group transformations
g′ = g0g and transform with respect to “boundary” supersymmetry as

δτ = iεiθi , δθi = εi ⇒ δ4τ = δ
(
dτ + idθiθi

)
= 0, δdθi = 0.

N. Kozyrev (BLTP JINR, Dubna) Schwarzians Aspects of Symmetry, 12.11.21 14 / 24



N=3 Schwarzian

Solution to osp(3|2) Maurer-Cartan equation
The covariant derivatives with respect to τ , θi are

d = dτ
∂

∂τ
+ dθi

∂

∂θi
= 4τDτ + dθiDi ⇒

Dτ = ∂τ , Di =
∂

∂θi
− iθi

∂

∂τ
, {Di ,Dj} = −2iδij∂τ .

To obtain the N=3 Schwarzian, the Cartan forms

Ω = g−1dg = iωPP + (ωQ)i Qi + iωDD + i (ωJ )i Ji + (ωS)i Si + iωK K

should be subjected to conditions

ωP = 4τ,
(
ωQ
)

i = dθi , ωD = 0.

Taking into account results in N=2, it would be useful to employ Maurer-Cartan
equations to find the general structure of the forms after applying the conditions
above. Without writing equations explicitly, the result is(
ωJ
)

i = i4τDiS + dθi S,
(
ωS
)

i = 4τ
(
SDiS −

1
2
εipqDpDqS

)
+ iεijk dθjDkS,

ωK = 4τ
(
− iSṠ +

1
6
(
εpqr DpDqDrS

)
− DkSDkS

)
+ idθi

(
SDiS −

1
2
εipqDpDqS

)
,

with S being obvious N=3 Schwarzian candidate.
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N=3 Schwarzian

The irreducibility conditions

To find the Schwarzian explicitly, we still need to find explicitly the Cartan forms and
irreducibility conditions of the multiplet. The forms read

ωP = e−u (dt − i ξidξi ) ≡ e−u4t , ωD = du − 2z4t − 2i dξiψi ,

ωK = eu
(

dz + z24t − iψidψi − 2i zψidξi

)
,(

ωQ
)

i =
(
ω̂Q
)

jMij ,
(
ωS
)

i =
(
ω̂S
)

jMij ,
(
ωJ
)

i =
(
ω̂J
)

jMij +
1
2
εijk dMjmMkm,

where hatted forms are

(ω̂Q)i = e−
u
2 (dξi +4tψi ) , (ω̂J )i = −iεijk

(
ψjdξk +

1
2
4tψjψk

)
,

(ω̂S)i = e
u
2 (dψi − iψiψjdξj + z (dξi +4t ψi )) .

The conditions ωP = 4τ ,
(
ωQ
)

i = dθi , ωD = 0 together imply that

ṫ + iξ̇i ξi = eu, Di t + iDiξj ξj = 0, Djξk = eu/2Mjk , ψk = −e−u ξ̇k , z =
1
2

e−u u̇.
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N=3 Schwarzian

N= 3 Schwarzian action
Taking into account irreducibility conditions and their consequences, one can show
that indeed(
ωJ
)

i = . . .+ dθp

[
− iMikεklmDpξlψm +

1
2
εijk euDpDjξm Dkξm

]
= . . .+ dθiSN=3,

SN=3 =
1
6

e−uεpqr Dpξn DqDrξn =
1
2
εpqr Dpξn DqDrξn

Dkξl Dkξl
.

with SN=3 being the known N=3 Schwarzian. The Schwarzian action can also be
constructed

SN3schw = −1
6

∫
dτεijk DiDjDkSN=3 = −1

6

∫
ωP ∧

(
ωQ
)

i ∧
(
ωQ
)

j ∧
(
ωJ
)

k ε
ijk =

= −1
2

∫
dτ
[∂2

τ

(
ṫ + iξ̇i ξi

)
ṫ + iξ̇i ξi

− 3
2

(
∂τ
(
ṫ + iξ̇i ξi

)
ṫ + iξ̇i ξi

)2

+ 2i
ξ̇i ξ̈i

ṫ + iξ̇i ξi
−

−2isṡ − i
ṀlpMpm ξ̇l ξ̇m

ṫ + iξ̇i ξi
+

1
2

ṀklṀkl

]
.

Here, we denote the superfields and their first components with the same letter, and s
is the first, independent, component of the Schwarzian.
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N=4 Schwarzian

The su(1,1|2) superalgebra
Let us, finally, briefly describe the construction of the N=4 supersymmetric
Schwarzian. In N=4 exists one-parametric family of superconformal algebras
D(2, 1, a); we consider only su(1, 1|2), which corresponds to a = −1:[
D,P

]
= −iP,

[
D,K

]
= iK ,

[
P,K

]
= 2iD,

{
Qα,Qβ} = 2δβαP,

{
Sα,Sβ

}
= 2δβαK ,{

Qα,Sβ
}

= −2δβαD − 2Tαβ ,
{

Qα,Sβ
}

= −2δαβD + 2Tβα,[
D,Qα

]
= − i

2 Qα,
[
D,Qα] = − i

2 Qα,
[
D,Sα

]
= i

2 Sα,
[
D,Sα

]
= i

2 Sα,[
K ,Qα

]
= iSα,

[
K ,Qα] = iSα,

[
P,Sα

]
= −iQα,

[
P,Sα

]
= −iQα.

The generators D,K ,P commute with su(2) generators Tαβ , Tαα = 0; the
commutators of su(2) with themselves and fermionic generators read[

Tαβ ,Tµν
]

= i
(
δβµTαν − δναTµβ

)
,[

Tαβ ,Qγ

]
= i
(
δβγQα −

1
2
δβαQγ

)
,
[
Tαβ ,Qγ] = −i

(
δγαQβ − 1

2
δβαQγ

)
,

[
Tαβ ,Sγ

]
= i
(
δβγSα −

1
2
δβαSγ

)
,
[
Tαβ ,Sγ

]
= −i

(
δγαSβ − 1

2
δβαSγ

)
.

Here, indices α, β, . . . = 1, 2 can be raised and lowered with help of antisymmetric
tensors εαβ , εαβ , εαβεβγ = δγα, ε12 = ε21 = 1.
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N=4 Schwarzian

The su(1,1|2) Cartan forms
The SU(1, 1|2) group element can be parameterized as

g = eitPeξ
αQα+ξ̄αQα

eψ
αSα+ψ̄αSα

eizK eλβ
αTα

β

eiuD,

there parameters depend on inert “boundary” superspace coordinates τ , θα, θ̄α. The
supersymmetry invariant forms and derivatives are

4τ = dτ + idθα θ̄α + id θ̄α θα, δτ = i
(
εαθ̄α + ε̄α θ

α), δθα = εα, δθ̄α = ε̄α,

Dα =
∂

∂θα
− iθ̄α∂τ , Dα =

∂

∂θ̄α
− iθα∂τ ,

{
Dα,Dβ} = −2iδβα∂τ .

The left-invariant Cartan forms are defined in standard way:

g−1dg = iωPP + iωK K + iωDD +
(
ωQ
)αQα +

(
ω̄Q
)
α

Qα +

+
(
ωS
)αSα +

(
ω̄S
)
α

Sα +
(
ωT
)
β

αTαβ .

Considering Maurer-Cartan equations with conditions ωP = 4τ ,
(
ωQ
)α

= dθα,
(
ω̄Q
)
α

,
ωD = 0 applied, one can find that the

(
ωT
)
α
β inevitably has structure,(

ωT
)
β

α = Sβα4τ, Sαα = 0, D(γSαβ) = 0, D(γSαβ) = 0,

with Sαβ satisfying the N=4, d = 1 vector multiplet conditions.
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N=4 Schwarzian

Solution to su(1,1|2) Maurer-Cartan equations
The rest of the forms also can be written in terms of Sαβ :(

ωS
)α

=
1
3
4τDγSγα − iSβαdθβ ,

(
ω̄S
)
α

= −1
3
4τDγSαγ + iSαβd θ̄β ,

ωK = 4τ
(

1
12
[
Dµ,Dν

]
Sµν − 1

2
SµνSµν

)
− i

3
dθα DγSαγ +

i
3

d θ̄αDγSγα.

To find Sαβ explicitly, one again should calculate the Cartan forms and irreducibility
conditions. The ωP conditions read

ωP = e−u4t = e−u(dt + i
(
dξαξ̄α + d ξ̄αξα

))
= 4τ ⇒ ṫ + i

(
ξ̇α ξ̄α + ˙̄ξαξ

α) = eu,

Dαt + i
(
Dαξβ ξ̄β + Dαξ̄βξβ

)
= 0, Dαt + i

(
Dαξβ ξ̄β + Dαξ̄βξ

β) = 0.

The
(
ωQ
)α and

(
ω̄Q
)
α

conditions read(
ωQ
)α

= e−
u
2

(
e−iλ

)
ρ

α(dξρ +4tψρ
)

= dθα ⇒

ψα = −e−u ξ̇α, Dβξα =
(
eiλ)

β

αeu/2, Dβξα = 0,(
ω̄Q
)
α

= e−
u
2

(
eiλ
)
α

ρ(d ξ̄ρ +4tψ̄ρ
)

= d θ̄α ⇒

ψ̄α = −e−u ˙̄ξα, Dβ ξ̄α =
(
e−iλ)

α

βeu/2, Dβ ξ̄α = 0.
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N=4 Schwarzian

N=4 superfield action

Using these relations, one transform the
(
ωT
)
β
α form into

(
ωT
)
β

α = 4τ
[
−i
(
e−iλ)

γ

α∂τ
(
eiλ)

β

γ − 2e−u(e−iλ)
µ

α(eiλ)
β

ν ξ̇µ ˙̄ξν + δαβ ξ̇
µ ˙̄ξµe−u

]
=

=
1
4
4τ
([

Dβ ,Dα]− 1
2
δαβ
[
Dγ ,Dγ]) log

(
Dµξν Dµξ̄ν

)
,

as expected. The Schwarzian action is

SN4schw = − 1
12

∫
dτ
[
Dµ,Dν

]
Sµν =

1
6

∫
dτdθαd θ̄β Sαβ =

=
1
6

∫ (
ωQ
)α ∧ (ω̄Q

)
β
∧
(
ωT
)
α

β =
i
6

∫
ωP ∧

(
ωS
)α ∧ (ω̄Q

)
α

=

= − i
6

∫
ωP ∧

(
ωQ
)α ∧ (ω̄S

)
α
.
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N=4 Schwarzian

N=4 component action

The component action reads

SN4schw = −1
2

∫
dτ

∂2
τ

(
ṫ + iξ̇αξ̄α + i ˙̄ξαξ

α
)

ṫ + iξ̇αξ̄α + i ˙̄ξαξα
− 3

2

(
∂τ
(
ṫ + iξ̇αξ̄α + i ˙̄ξαξ

α
)

ṫ + iξ̇αξ̄α + i ˙̄ξαξα

)2

+

+2i
ξ̈α ˙̄ξα + ¨̄ξαξ̇

α

ṫ + iξ̇β ξ̄β + i ˙̄ξβξβ
− 2

(
ξ̇µ ˙̄ξµ

ṫ

)2

+
(
e−iλ)

ρ

β (e−iλ)
σ

α∂τ
(
eiλ)

ρ

α ∂τ
(
eiλ)

β

σ−

−4i

(
e−iλ)

ρ
β∂τ
(
eiλ)

β
σ ξ̇ρ ˙̄ξσ

ṫ + iξ̇αξ̄α + i ˙̄ξαξα

 .
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Maxwell algebra Schwarzians

Maxwell algebra Schwarzians
Finally, let us note that an analog of Schwarzian appears during study of flat space
limit of Jackiw-Teitelboim gravity - Sachdev-Ye-Kitaev model correspondence. It is
related to the Maxwell algebra,

i
[
D,P

]
= P, i

[
D,K

]
= K , i

[
K ,P

]
= 2Z

with Z being central charge generator instead of dilatation generator. Repeating steps
we did in the bosonic case, one can define the coset element, calculate the Cartan
forms

g = eit(P+m2K +qJ)eizK eiuZ eiφD, g−1dg = iωPP + iωK K + iωDD + iωZ Z ,

ωP = e−φdt , ωK = eφ
(
dz − qzdt + m2dt

)
, ωD = dφ ωZ = du − 2zdt ,

and, imposing conditions

ωP = dτ, ωZ = 0 ⇒ ṫ = eφ, z =
u̇
2ṫ
,

one can obtain the related Schwarzian as projection of ωK ,

ωK = dτ ṫ
[

1
2

(
ü
ṫ
− u̇ẗ

ṫ2

)
+ m2 ṫ − 1

2
qu̇
]
,

which is already known Schwarzian constructed for this purpose. It would be
interesting to find supersymmetric extensions of this system also.
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Conclusion

Conclusion

In this talk, we discussed the method of construction of bosonic and supersymmetric
Schwarzians using the formalism of nonlinear realizations. It involves calculation of
invariant Cartan forms of a given superconformal group and enforcement of
conditions, which are almost universal for all groups

ωP = 4τ,
(
ωQ
)i

= dθi , ωD = 0

Here, τ and θi are the coordinates of some “boundary” superspace, and 4τ and dθi

being supersymmetry-invariant forms. In the cases of N=1, 2, 3, 4, the constraints on
respective superconformal group forms express them in terms of supersymmetric
Schwarzians. This can be proven in simplest way by study of Maurer-Cartan
equations. It was also shown that supersymmetric Schwarzian actions are given by
integrals of Schwarzians over appropriate superspaces.
This work can be extended further to more general superconformal groups, such as
D(2, 1, a). Another interesting problem is to obtain non-relativistic version of
Schwarzians.
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