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Refractive index profiles, the “Maxwell fish eye”.

• if the refractive index of a medium is not constant but 
has some sort of spatial dependency, the material is 
known as a gradient-index or GRIN medium

• the crystalline lens of the human eye is an example of a 
GRIN lens with a refractive index varying from about 
1.406 in the inner core to approximately 1.386 at the 
less dense cortex

• Luneburg lens: 𝑛 𝐫 = 2 − 𝐫/R 2

• Maxwell fish eye lens (n0 and 𝑅 are constants):

𝑛 𝐫 =
n0

1 + (𝒓/𝑅)2



SFermat =
1

ƛ0
නdሚl , dሚl ≔ n 𝐫 d Τ𝐫 d τ dτ

• action of a system on a three-dimensional curved space equipped with the  “optical metrics” of 

Euclidean signature   dሚl2 = n2 𝐫 d𝐫 ⋅ d𝐫

Geometry

n 𝐫 =
n0

1 + κ𝐫2
, κ = ±

1

4r0
2

• MFE is defined by the metrics of (three-dimensional) sphere 
or pseudosphere (under pseudosphere we mean the upper 
(or lower) sheet of the two-sheet hyperboloid).

• the symmetries of the system which describe the propagation
of light in a particular medium are coming from the
symmetries of the optical metrics of that particular medium

• SO(3) and SO(4)/SO(3.1)



Φ ≔
𝐩2

n2 𝐫
− ƛ0

−2 = 0.

{xi, pj} = δij, {pi, pj} = {xi, xj} = 0,

ℋ0 = α 𝐩, 𝐫 Φ = α 𝐩, 𝐫
p2

n2 𝐫
− ƛ0

−2 ≈ 0

df r, p

dτ
= f,ℋ0 = f, α Φ + α f,Φ ≈ α f,Φ . α =

n2 𝐫

p + ƛ0
−1n 𝐫

⇒ ℋOpt = p − ƛ0
−1n r

Hamiltonian formalism

𝑑𝐩

𝑑𝑙
= ƛ0

−1∇𝑛 𝐫
𝑑𝒓

𝑑𝑙
=
𝒑

𝑝

⇓



Construction of optical Hamiltonians with similar 
symmetry algebras

• given the Hamiltonian  𝐻 =
𝑝2

2𝑔 𝑟
+ 𝑉 𝑟 after fixing the energy surface H = E, (according to 

Maupertuis principle) we can relate the trajectories with the optical Hamiltonian ℋ0 and with the 

refraction index 𝑛 𝑟 = 2𝑔 𝑟 𝐸 − 𝑉 𝑟

• ℋ0 , ℋOpt as well as 𝑛 𝑟 inherit all the symmetries and constants of motion of the Hamiltonian

• canonical transformations preserve the symmetries of the Hamiltonians and their level surfaces

we can to construct the physically non-equivalent optical 
Hamiltonians (and refraction indices) with the identical symmetry 
algebra

⇓



Coulomb-Fish eye “duality”: Coulomb problem

HCoul − E ≔
p2

2
−
γ

r
− E = 0, ⇒ nCoul = ƛ0 2 𝐸 + 𝛾/𝑟 , where γ > 0.

• Integrals of motion: 𝐋 = r × p, 𝐀 = 𝐋 × 𝐩 + γ
𝒓

𝑟

• Algebra formed: Ai, Aj = −2εijkHCoulLk, Ai, Lj = εijkAk, Li, Lj = εijkLk



Coulomb-Fish eye “duality”: Maxwell Fish eye

𝐩, 𝐫 → −𝐫, 𝐩

r2 −
2γ

p
− 2E = 0 ⇒ p −

2γ

r2−2E
= 0 ⇒ nMfe =

n0

1+κ𝐫2
,where κ ≔ −

1

2E
,

n0

ƛ0
≔ 2ϵκ

• Integrals of motion: 𝐋 → 𝐋, 𝐀 →
𝐓

2κ
, 𝐓 = 1 − κ𝐫2 p + 2κ rp 𝒓

• Algebra formed: Li, Lj = εijkLk, Ti, Lj = εijkTk, Ti, Tj = 4κεijkLk



Inclusion of polarization 

Rotation generators in this space : 𝑱 = 𝒓 × 𝒑 + 𝑠
𝒑

𝑝

Equations of motion:
𝑑𝒑

𝑑𝑙
= ƛ0

−1𝛁𝑛 𝒓 ,
𝑑𝒓

𝑑𝑙
=

𝒑

𝑝
−

𝑠

ƛ0
𝑭 × ∇𝑛 𝒓

However, the above procedure, i.e. twisting the Poisson bracket with 

preservation of the Hamiltonian, violates the non-kinematical (hidden) 

symmetry of the system.

Inclusion of polarization in terms of Hamiltonian formalism means to preserve the form 
of the Hamiltonian and replace the canonical Poisson brackets by the twisted ones

{𝑥𝑖 , 𝑝𝑗} = δ𝑖𝑗 , {𝑥𝑖 , 𝑥𝑗} = 𝑠ε𝑖𝑗𝑘𝐹𝑘 𝑝 , {𝑝𝑖, 𝑝𝑗} = 0,

Fk are the components of the Berry monopole 𝐅:

𝐅 ≔
𝜕

𝜕p
× 𝐀 p =

𝐩

p3

𝐀 is the vector-potential of the “Berry monopole” i.e. 

the potential of the magnetic (Dirac) monopole located 

at the origin of momentum space
where



Construction of MFE profile for polarized 
light: MICZ-Kepler problem

𝐻𝑀𝐼𝐶𝑍 =
p2

2
+

s2

2r2
−
γ

r
{xi, pj } = δij, {pi, pj } = sεijk

xk
r3
, {xi, xj } = 0

• Integrals of motion: 𝐉 = 𝐫 × 𝐩 + s
𝐫

r
𝐀𝐬= 𝐉 × 𝐩 + γ

𝐫

r

• Algebra: same as in previous case with the replacement (𝐋, 𝐀) → (𝐉, 𝐀𝐬)

twisted Poisson brackets

• Coulomb problem in the presence of Dirac 
monopole (MICZ-Kepler problem)



Construction of MFE profile for polarized light: 
Deformed MFE

𝐩, 𝐫 → −𝐫, 𝐩

𝐻𝑀𝐼𝐶𝑍 = E ⇔ r2 +
s2

p2
−
2γ

p
− 2E = 0 ⇒

nMfe
s 𝐫 =

nMfe 𝐫

2
1 + 1 −

4κs2ƛ0
2

n0

1

nMfe 𝐫
,    

where κ ≔ −
1

2E
,

n0
ƛ0

≔ 2ϵκ , ϵ = −sgn r2 + 1/κ



Construction of MFE profile for polarized light: 
Integrals of motion

• Integrals of motion: 𝐉 → 𝐫 × 𝐩 + s
𝐩

p
, 𝐀𝐬→

𝑻𝒔

κ
, 𝑻𝒔 = 2 −

n0

nMfe
s 𝐫

𝐩 + 2κ 𝑟𝑝 𝐫 +
2κs

nMfe
s r

𝐉

• Algebra: same as the original MFE profile with the replacement (𝐋, 𝐓) → (𝐉, 𝑻𝒔)



nMfe
s 𝐫 =

nMfe 𝐫

2
1 + 1 −

4κƛ0
2s2

n0

1

nMfe 𝐫

MFE profile for polarized light
• for 𝜅 > 0 we get a restriction of rays in 

the finite domain: r ≤
𝑛0
2

4𝑠2ƛ0
2𝜅2

−
1

𝜅

• note that spin appears along with the 
factor κλ0

2 = λ0/2r0
2

• in order to stay within the bounds of 
geometrical optics approximation, this 
factor must be reasonably small.

• therefore, the influence of the spin 
will be far more notable within certain 
range of distance from the core of the 
fish eye.

• the latter happens when the condition 

4κs2𝜆0
2/n0 ≈ nMfe r holds 

• at these distances the refraction index 

in the presence of spin can be much 

smaller compared to the refraction 

index with zero spin

s = 1
s = 0



Trajectories

𝐫 ⋅ 𝐉 = s
𝐫𝐩

p
, 𝐫 ⋅ 𝐓𝐬 =

n0
𝜆0

𝐫𝐩

p
⇒ 𝐫 ⋅ 𝐉 −

s𝜆0
n0

𝐓𝐬 = 0
ray trajectories are orthogonal to the axis 

𝑬𝟑 = 𝑱 −
𝑠𝜆0

𝑛0
𝑻𝒔

⇓

⇓
the trajectories belong to the plane spanned by the following vectors: 

𝐄𝟏 = 𝐓𝐬 × 𝐉, 𝐄𝟐 = 𝐄𝟑 × 𝐄𝟏 = 𝐉𝟐 − s2 𝐓𝐬 −
4sλ0κ

n0
𝐉 : 𝐄𝟑 ⋅ 𝐄𝟐 = 𝐄𝟑 ⋅ 𝐄𝟏 = 0

Then, from the expression 𝐉 ⋅ 𝐫 × 𝐓𝐬 we immediately obtain the solution for the ray trajectories:

𝐫 ⋅ 𝑻𝒔 × 𝐉 = J2 − s2 2 −
n0
nmfe
s



Trajectories: Polar coordinates

𝐞i =
𝑬𝒊
Ei

: 𝒆𝒊 ⋅ 𝒆𝒋 = δij

𝑬𝟏
2 = 𝐉2 − s2

n0
2

ƛ0
2 − 4κ𝐉2 , 𝑬𝟑

2 = 𝐉2 − s2 1 −
4s2ƛ0

2κ

n0
2 , 𝑬𝟐

2 = 𝑬𝟏
2 𝑬𝟑

2

We introduce the following orthogonal frame

Decomposing r over this frame, we introduce the polar coordinates:

r = x1𝐞𝟏 + x2𝐞𝟐, x1 = r cosφ , x2 = r sinφ and we get the trajectory equation

1 − κ as r cosφ =
1 + κr2

1 + 1 −
4κs2ƛ0

2

n0
2 1 + κr2

as
2 ≔ Rs

2 −
1

κ
, Rs

2 ≔
n0
2 − 4κs2ƛ0

2

4ƛ0
2κ2 J2 − s2

where



Deformations of the trajectories
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