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Structure

* Refractive index profiles, the “Maxwell fish eye”
* Hamiltonian formalism

e Construction scheme of optical Hamiltonians and refraction indices
with similar symmetry algebras

* Coulomb-Fish eye “duality”

* Construction of MFE profile for polarized light
* Trajectories for polarized light

* Deformations of the trajectories



e if the refractive index of a medium is not constant but

Refractive index profiles, the “Maxwell fish eye”.

has some sort of spatial dependency, the material is
known as a gradient-index or GRIN medium

* the crystalline lens of the human eye is an example of a
GRIN lens with a refractive index varying from about
1.406 in the inner core to approximately 1.386 at the
less dense cortex

* Luneburglens: n(r) = \/2 — (r/R)?

* Maxwell fish eye lens (ny and R are constants):
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Geometry

action of a system on a three-dimensional curved space equipped with the “optical metrics” of
Euclidean signature dI? = n?(r)dr - dr
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MPFE is defined by the metrics of (three-dimensional) sphere ||
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the symmetries of the system which describe the propagation / \

of light in a particular medium are coming from the
. . . . 10 [ —=<
symmetries of the optical metrics of that particular medium \
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Hamiltonian formalism
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Construction of optical Hamiltonians with similar
symmetry algebras

2g9(r)
Maupertuis principle) we can relate the trajectories with the optical Hamiltonian H; and with the

e given the Hamiltonian H = + V (r) after fixing the energy surface H = E, (according to

refraction index n(r) = \/Zg(r)(E — V()

* Hy, Hopt as well as n(r) inherit all the symmetries and constants of motion of the Hamiltonian
* canonical transformations preserve the symmetries of the Hamiltonians and their level surfaces

U

we can to construct the physically non-equivalent optical
Hamiltonians (and refraction indices) with the identical symmetry
algebra



Coulomb-Fish eye “duality”: Coulomb problem

2
Hcoul — E = % ———E=0, = ncoy= XO\/Z(E +y/r), where vy > 0.

= I

* Integralsof motion: L=rxp, A=LXp+ y%

° Algebra formed: {AI,A]} — _ZsiijCoulLk' {Air L]} — EijkAkJ {Li' L]} = Eijk]-‘k



Coulomb-Fish eye “duality”: Maxwell Fish eye

(p; l') — (—r, p)
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* Integralsof motion: L-—->L A- z_TK’ T = (1 — xr?)p + 2x(rp)r

° Algebra formed: {Li, L]} — Sijk]-‘kr {Ti, L] = Eijka’ {Tir T]} = 4K8ijk]-‘k



Inclusion of polarization

Inclusion of polarization in terms of Hamiltonian formalism means to preserve the form
of the Hamiltonian and replace the canonical Poisson brackets by the twisted ones

xopi} =38,  {xix}=sepF(@),  {pup;} =0,

Fy are the components of the Berry monopole F: A is the vector-potential of the “Berry monopole” i.e.
F i x A(p) = p where | the potential of the magnetic (Dirac) monopole located
dp p? at the origin of momentum space
Rotation generators in this space : J=rXp+ sg
d _ dr S
Equations of motion: el 7&0 1Vn(r), Z=E_ —F X Vn(r)
dl Al  p X

However, the above procedure, i.e. twisting the Poisson bracket with
preservation of the Hamiltonian, violates the non-kinematical (hidden)
symmetry of the system.



Construction of MFE profile for polarized
light: MICZ-Kepler problem

* Coulomb problem in the presence of Dirac
monopole (MICZ-Kepler problem)

p> s
Hycz = 5 +2

/ twisted Poisson brackets
2
Y Xi

r

) {Xi, pj } = Oy, {pPi,pj } = SEijk 3 %} =0

* Integrals of motion: ]=r><p+s£ AS:])(p+y£

* Algebra: same as in previous case with the replacement (L,A) = (], Ay)



Construction of MFE profile for polarized light:
Deformed MFE

(p; l') — (—l', p)
H E © r2+ s° _ 2y 2E=0 =
= r —_ —_ =
MICZ 22
< Nyfe (T) 4xs2i5 1
n r) = 1+ |1 ,
Mfe( ) 2 ( \/ ng Nyfe(r)

h = 1 nO'—Z = (r’ + 1/x)
where x:= T T = 2€k ,€ = —sgn(r JA



Construction of MFE profile for polarized light:
Integrals of motion

. T
* Integrals of motion: J > rXxXp+ sg , A— f,

2KS

nIS\/Ife (r)

Ng

nlS\/Ife (r)

T, = (2 — )p + 2x(rp)r + J

* Algebra: same as the original MFE profile with the replacement (L, T) — (], T)



MFE profile for polarized light
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for k > 0 we get a restriction of rays in

the finite domain: r < \/

4s21%Kk2%2 K
note that spin appears along with the
factor kA3 = (Ag/2rp)?

in order to stay within the bounds of
geometrical optics approximation, this
factor must be reasonably small.
therefore, the influence of the spin
will be far more notable within certain
range of distance from the core of the
fish eye.

the latter happens when the condition
4xs?A3 /ng =~ nyse(r) holds

at these distances the refraction index
in the presence of spin can be much
smaller compared to the refraction
index with zero spin



Trajectories

rp ny rp s ray trajectories are orthogonal to the axis
r-J=s—, r-Tg=—— = r-|J——T5|=0 = _ sho
p lo P ng Es=J—""Ts
U
the trajectories belong to the plane spanned by the following vectors:
4sAoK
E, =T Xx]J, E2=E3><E1=(]2—32)<TS— n" ]) . E3-E;=E3-E{=0
0

Then, from the expression J - (r X Ty) we immediately obtain the solution for the ray trajectories:

r-(Ts><D=(IZ—SZ)<2—anIO>

mfe




Trajectories: Polar coordinates

: : E.
We introduce the following orthogonal frame e = IEll e;-ej =8
i
2 2%x2
n 4s“A5K
|Eq|* = (J% —s%) <x—§— 4K]2>, |E3|* = (J? —s%) (1 - nzo >; |E;|* = |E4]?|E5|?
0 0

Decomposing r over this frame, we introduce the polar coordinates:

r =Xx,€; +X5€y, X, =rcosq,

X, =rsin@ and we get the trajectory equation

1 — |k||ag|rcos @ =

1 + kr?

s -

4ks2AZ
2
o

(1 + xr?)

where

1
|as|2 = Rg - Er

2.

n3 — 4xs?3

RZ =
* o 4%3K2(J2 — s2)




Deformations of the trajectories
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