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Topology and Symmetry
Introduction

(Non-rigorous) Definition
Topology is the study of continuity

Topological Condensed Matter
Umbrella term of various problems in condensed matter that can
be explained with the aid of topology
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Topology and Symmetry
Example: Bloch’s Theorem

Definition
Translationally invariant Hamiltonian has eigenstates of the form

ψn(x) = eikxunk(x)

Idealized lattice - Z
Real lattice of size L

Born-von Karman PBC is assumed
Symmetry breaks to Z→ ZL = 〈g|gL = e〉

ψ 7→ D(g)ψ
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Topology and Symmetry
Bloch’s Theorem cont’d

Irreps of ZN are
characterized by integer m:
Dm(gn) = ei

2πm
L

n ≡ eikmn

Translational invariance
=⇒ quantum number km
Representation of Z is U(1)
Same technique used in

Dispersion of crystals [1]
Dispersion of CNRs [6]
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Topology and Symmetry
Example: Gapped Systems

EG - Energy gap between
ground and excited states
Finite in thermodynamic
limit =⇒ System is gapped
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Topology and Symmetry
Example: Gapped Systems cont’d

Gapped Hamiltonians H,H ′
Adiabatic transport H → H ′

Timescale defined by E−1
G

System stays in GS
Nonequivalent phases
=⇒ Gap closing
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Kitaev Model
Hamiltonian

Model Hamiltonian

H

t
= −

L−1∑
j=1

(c†jcj+1 + h.c.) + ∆
t

L−1∑
j=1

(cjcj+1 + h.c.)− µ

t

L∑
j=1

c†jcj

t - Hopping strength
∆ - SC pairing strength
µ - Chemical potential
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Kitaev Model
Majorana Fermions

Definition

cj = γja + iγjb
2 c†j = γja − iγjb

2
with properties

{γjλ, γkλ′} = δjkδλλ′ γ†jλ = γjλ
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Kitaev Model
Phases

Hamiltonian at Symmetric Lines (∆ = t)

H = −t
L−1∑
j=1

iγjbγj+1a −
µ

2

L∑
j=1

(1 + iγjaγjb)

µ� t

Trivial
Unique GS
No MZM
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Kitaev Model
Phases cont’d

Hamiltonian at Symmetric Lines (∆ = t)

H = −t
L−1∑
j=1

iγjbγj+1a −
µ

2

L∑
j=1

(1 + γjaγjb)

µ� t

Topological
GSD due to parity - P =

∏L
j=1(−iγjaγjb)

MZM - Edge states ∼ γ1a ± iγLb
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Kitaev Model
Gap Closing

Dispersion Relation (∆ = t)

E(k) = ±
√
µ2 + 4t2 + 4µt cos(ka)

−3 −2 −1 0 1 2 3

ka

−4

−2

0

2

4

E
(k

)

µ =-3t

µ =-2t

Heff = −(µ+ 2t)σz + 2tkσy
Gap closing at µ = −2t

Dirac for massless particle
Chiral states
v = 2t
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Carbon Nanoribbon
Graphene

Hamiltonian in Momentum Space

H(k) = t
∑
i

σx cos(k · ai)

−σy sin(k · ai)

Sublattice - σz
Spinless time reversal - K
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Carbon Nanoribbon
Edge Geometry

Armchair nanoribbon (ANR) Zigzag nanoribbon (ZNR)
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Carbon Nanoribbon
Dispersion Relations: Armchair
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W = 7

Energy depends on widths
Zero crossing for 3m− 1
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Carbon Nanoribbon
Dispersion Relations: Armchair cont’d

Different ANRs can be stacked [2] [5]
Topological states at junctions
Other geometries possible



Topology and Symmetry Kitaev Model Carbon Nanoribbon BCS-Hubbard References

Carbon Nanoribbon
Dispersion Relations: Zigzag
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Flatband around
2π
3 ≤ |k| ≤ π

Edge states



Topology and Symmetry Kitaev Model Carbon Nanoribbon BCS-Hubbard References

BCS-Hubbard
Bipartite Lattice

BCS-Hubbard [3]

H0 = −
∑
〈i,j〉σ

tc†iσcjσ+∆ciσcjσ+h.c.

Hint = −U
∑
l

(
nl↑ −

1
2

)(
nl↓ −

1
2

)

〈i, j〉 - Nearest neighbors
n - Number operator
σ - Spin
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BCS-Hubbard
Composite Fermions

Definition

dl1 = dl2 = 1
i
√

2
(cl← − c†l→) ≡ dl← l ∈ A

dl2 = dl1 = 1√
2

(cl→ + c†l←) ≡ dl→ l ∈ B

Conserved Quantities

ξlDl = (2d†l2dl2 − 1) ∈ {−1, 1}
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BCS-Hubbard
Diagonal Hamiltonian

Hamiltonian

H = −4it
∑
〈i,j〉

di1dj1 + d†i1d
†
j1 + U

∑
l

ξlDl

(
nl1 −

1
2

)

Hilbert Space
Split into non-interacting 2N sectors
Sectors Labeled by the set {ξlDl}
For each sector Hamiltonian is solvable [7] [4]
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BCS-Hubbard
Nanoribbon: Zigzag
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BCS-Hubbard
Nanoribbon: Armchair
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Conclusion

Topological matter is in between abstract mathematics and
physics of materials
Allows us to extend and formalize the classification of states
of matter

Fractional quantities
Edge states
Anyions
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Thank You!
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Topology and Symmetry
Example: Ahronov-Bohm Effect

|eiS1 + eiS2 | ∼ ei∆S

∆S ∝
∮
~A · d~l = ΦB

Due to solenoid the space is
M = R3\R ' S1

π1(S1) = Z =⇒ paths
characterized by winding
number
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