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Introduction



What is Myers-Perry Black Hole?

Myers-Perry (MP) Black Hole is the higher dimensional
generalization of the rotating Kerr BH.

= |n d = 4 dimensions the MP BH reduces to the Kerr BH.

= Setting all rotation parameters a; to 0 will reduce the d
dimensional MP BH to d dimensional Schwarzschild
(non-rotating) BH. Now, also setting M = 0 yields the flat

space metric.

= The form of MP metrics differs slightly for odd and even

dimensions.



What is Extremal MP Black Hole?

= Event horizon of Kerr BH is described by
rH=M+VM?— a2
= |t follows that BHs with a > M are not physical.

= ry is real only for a < M. Black holes with a = M are called
extremal (BHs with biggest possible angular momentum
J = M? for given BH mass)

= This discussion can be generalized for MP black hole



What is Near Horizon Limit?

Near Horizon Limit (NHL) is a vacuum solution of Einstein
equations, which describe the space-time near the event horizon of
extremal Kerr BH.

= Naturally, one can assume that NHL can be obtained by
redefining the radial coordinate r in the metric of the extremal
Kerr BH
r— ry +eryr with e — 0

= But this redefinition gives rise to a degenerate metric. The
problem can be resolved by taking additional limits
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Near Horizon limit of an Extremal
Myers-Perry Black Hole




NHEMP geometry slightly differs in odd and even dimensions. For
that reason we introduce a unified description for arbitrary

dimensions

ds? dr? Vo N iMy,

— = A(x;0) (—r2d7'2 + r2) + Z dxdx; + Z i (x, o)xix; D' Dy’
=1 ij=1

where

0 when D=2N+1
N, =N + o, G =

1 when D=2N-+2



ds? 2, 2, dr " . 'Dy/
E = A(x; 0) (—r drs + r2> + IZ;C/X/C’XI + 'Zl Fij(0)xix;De' D’
= ij=

= Latitudinal coordinates x; and rotation parameters my; are

restricted:
N, No
3 xi _ 3 11+ 20'

= One additional latitudinal coordinate in even dimensions

= Part of the metric is similar to AdS>



The conformal SO(2,1) symmetry
{H.D} =H, {H,K}=2D, {D,K}=K, T = HK — D?

allows us to redefine r and its canonical conjugate momentum p,
so the Hamiltonian takes formally non-relativistic form!

1p2 4+ 2I(X7pxap$0).

f= 3Pk R?

= R=V2K, pr= % are the “radius" and its canonical

conjugate momentum

= 7 is the Casimir element of SO(2,1)

1 Hakobyan:2009ac.




Some important consequences...

= The radial part of the Hamiltonian is separated.

= We just need to study Casimir of SO(2,1), which is called
angular mechanics.

= The variables ¢; are cyclic. Thus their canonically conjugate
momenta p,, are first integrals (in total N for both odd and
even dimensions).



Fully non-isotropic NHEMP

Here we assume that none of the rotation parameters m; are equal
to each other

= Angular mechanics is

Ny—1 N p2
T=AX) | h*™(x)paps+ > 5 + go(p,)
a,b=1 i=1 i
= Separation of variables takes place in ellipsoidal coordinates
N,
T mp— Ay
xt=m-\]] —=

= Thus fully non-isotropic NHEMP is integrable for arbitrary
higher dimensions with N, + N 4 1 first integrals

10



Fully isotropic NHEM

Here we assume that all of the rotation parameters m; are equal to
each other. The angular mechanics is

& 7 (x )p N
Iy = Z (772(X)51 XIXJ PiPj + Z X — + w(pWi) in27
ij=1 i=1 i =1

= |[n odd dimensions

The system is a generalization of Higgs oscillator, known as

Rossochatius system.

= This is not the case in even dimensions.

11



Fully isotropic NHEM

= Both of the systems admit separation of variables by
recursively introducing spherical coordinates

Ny—1
= q )
XN, = VNocosOpy,—1, Xa =/ NyXysinOpn,_1, E x5 =1,
a=1

= The systems also contain hidden symmetries, which

= make the odd dimensional Rossochatius system maximally
superintegrable

= make the even dimensional system superintegrable (lacking one
constant of motion to be maximally superintegrable)
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Partially isotropic NHEMP

Let's discuss the simplest mixed case in odd (2N + 1) dimensions.
We have p non-equal rotation parameters and / equal rotation
parameters such that p+ /=N

Mm#FEM#*...£MpF K, Mp1=Mpip2=...=My=

= Non of the BH rotation parameters is 0.

= Separation of variables is achieved by introducing a mixture of
spherical and ellipsoidal coordinates.
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Partially isotropic NHEMP

If I =1 the spherical subsystem is trivial and does not produce new
integrals of motion. This is the fully non-isotropic integrable case.
If | > 2 then

= The / — 1 dimensional spherical subsystem is maximally
superintegrable

# of first integrals 2(/—1)—1
= The non-isotropic system contains p integrals of motion
# of first integrals p+2(/—-1)—-1=(N—-1)+/-2

In the fully isotropic (p = 0, / = N), the angular mechanics is
maximally superintegrable with 2/ — 3 first integrals
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NH limit of Extremal Vanishing
Horizon MP BH (NHEVHMP)




NHEVHMP

NHEVHMP is obtained from the extremal MP metric by taking
one of the rotation parameters equal to 0 and obtaining the NH
limit. This results into a well defined solution of vacuum Einstein

equations.
dS2 N—-1 N—1
i Fo(x)dsigs, + > X2+ Y Fab(X) xaxpdpadp,
a a,b

= Notice dsf\ds3 term in the metric.

= The isometry contains SO(2,1) x SO(2,1) part.

ii5)



NHEVHMP

= Although we have two conformal groups, they give rise to the
same Casimir element. Thus we have a single angular
mechanics and no additional constants of motion compared to
non-EVH case.

= The rest of the discussion is the same for fully isotropic, fully
non-isotropic and generic cases.
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KG on NHEMP

Let's discuss Klein-Gordon field in the background of NHEMP
black hole. We will bound the discussion to fully non-isotropic case
in odd (d = 2N + 1) dimensions.
1
00 = —0,(vV/—gg*P05%) = M0,
\/jg Ci( B )
As one would expect, the separation of variables takes place in

elliptic coordinates as in the case of classical particles.

> e my =\,
X = (m/ — )\[) H m
J#I

where NHEMP has the following form

diQ _A()\)< r’dr? + >+Z ha( )\)d)\2+z Fixi(N)x;(X) D' Dy

rH ij=1
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KG in NHEMP

After calculating the inverse metric and metric determinant, KG
equation can be rewritten in the following form:

2
1 1o & .0
m(‘ﬂ[af?kw
N

i= 1

P+ r’o’d + 2r8,<l5)

N—-1

N—

Z W32 -3
= a=1
N

Z iz @ - Z \/m’ _— \/mf, Dp;0® = MPD .

= ij=1 mj

O

The variables can be separated if we consider the following ansatz:

N—1 ' N
r)- H Ry,(\z) - e~ H e’Lb@b’
=il b=1

where w and Lj are constants.
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KG in NHEMP

The following equations describe the dynamics of r

" / 2
R R 1

i=1

and A,
4 (R, R.I 1 N
- 22 __ _72a m; — Aa
Aa (RAQ R, Z m; — A, j:Hl( / )
b N N g N—-1
+ G [ mi+ (VY go(Aa) P = D kAT
Aa i =1 Mi— Aa a=1

where C>, k, and g, are constants.
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KG in NHEMP

After the following transformation,
2iw
2= ,
r

the radial equation becomes Whittaker's differential equation

d?R, 1 K 1/4 — 142
_7+7+(/ %) R —0.
dz2

4 z 72
where K and g are constants related to k', L; and Co.

= The general solutions to this equation are Whittaker's
functions : M ,,(z) and Wk ,(z) which can be expressed
through confluent hypergeometric functions.

= Their behavior of Whittaker's functions at r — 0 and r — oo
strongly depend on the values of k, L; and C; and can be

used to put physical restrictions on these constants. 20



KG on NHEVHMP background




KG on NHEVHMP

Let's discuss Klein-Gordon field in the background of fully
non-isotropic, odd dimensional (d = 2N + 1) NHEVHMP black
hole.

1
O = ——0,(v/—gg“?d50) = M?d
= (V—58°703%)

As one would expect, the separation of variables takes place in

elliptic coordinates as in the case of classical particles.

2 i mp— Ay
x| = (m, — )\[) H m
J£

where NHEVHMP has the following form
d
ds? = F()\)< p?d7? + pp + pdy? )
N—1

N—1
+ Z had)\g + Z ﬁ/ab )?a(A))A(b()‘)dQOadSDb
a=1 a,b=1 21



KG on NHEVHMP

After calculating the inverse metric and metric determinant, KG
equation can be rewritten in the following form:

1 20 — 050
(— s + pP02D + 3p0,P

F(A)
N—-1 1 1
+ Y Lee L 9,8,,®
Z 2 <Pa iy mm Pa~Pb
N— ].ha N—1 i)a 5
h?o? & —8 —— O\, 2 =MD
S Ro Y po- X oo,

a,b=1
The variables can be separated if we consider the following ansatz:

N—1 ' N-1
(p) - H Ra(\s) - e (Chrmtmuy) H elLoen
= b=1

where k;, my, and L, are constants. e



KG on NHEVHMP

The dynamics of p is described by

k2 A
(p + p282 +3p0, > Ry(p) = —4Ca Ry(p).

And for A; we have

R 1R, N2 R/R, \N
4<R+)\R —Z l;I(mC—)\a)

b=1 Mb— Aa) oh
462 N—1 4 N—1
H mp+ Y —L— +go(— )V 2= kAT
Aa b=1 b=1 Aa a=1

where §,,, o and k, are constants.
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KG on NHEVHMP

After the following transformation

K2 — m2
u(p) T
R = ——, and =
P(p) D I n 1Y Z )
the radial differential equation becomes Bessel's equation

d? d A
2 2\ 2 _
z—d2u+z—d u—i—( )u—O, v-=1-4C

= The general solutions to this equation are Bessel function

J(2), Yu(2).

= Their behavior of these functions at r — 0 and r — oo
restrict the value of C».
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Equations




NHEMP geometry

ds? dr?\ & u o

= A(x; o) (—r2d7'2 + r2) + Z dxydx; + Z Fiji(x, 0)xix; D' D!
H =1 ij=1

where

0 when D=2N+1

N, =N + o, o= ;
1 when D=2N-+2

Ne
A(X) — Zl 1 2/ml2
1+U + 4ZI<J mj mj
1 vmi —1x; /mj — 1x

07 xp/mi o mi mj

Y

i = 0 +
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First integrals of fully-non isotropic NHEMP

Fa(X7 U) = K(ZE(X, (7) PbPc + Léja)(xﬂ U) PypiPyp; + A(a)(X7 U)m(z)rlgl

where

Ng —a—1 Ng —a—1
be _ No+a—a Ng—oa—a | 2 oy #b o be #b,c
kLS = E (—pNeteamag, mhe +xF g (=DM amb | ST MET L e

a=0 a=1

Ng —a .
" §i
<1 N, Ng —a—a+1 1
sza): (1 -8k E (ot Caq _ymle Tt _slay =
i
A/ mi—14/mj—1

m; mj

a=1

—1
+ (=1 An, —a
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