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Introduction



What is Myers-Perry Black Hole?

Myers-Perry (MP) Black Hole is the higher dimensional
generalization of the rotating Kerr BH.

• In d = 4 dimensions the MP BH reduces to the Kerr BH.

• Setting all rotation parameters ai to 0 will reduce the d
dimensional MP BH to d dimensional Schwarzschild
(non-rotating) BH. Now, also setting M = 0 yields the flat
space metric.

• The form of MP metrics differs slightly for odd and even
dimensions.
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What is Extremal MP Black Hole?

• Event horizon of Kerr BH is described by

rH = M +
√

M2 − a2

• It follows that BHs with a > M are not physical.

• rH is real only for a ≤ M. Black holes with a = M are called
extremal (BHs with biggest possible angular momentum
J = M2 for given BH mass)

• This discussion can be generalized for MP black hole
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What is Near Horizon Limit?

Near Horizon Limit (NHL) is a vacuum solution of Einstein
equations, which describe the space-time near the event horizon of
extremal Kerr BH.

• Naturally, one can assume that NHL can be obtained by
redefining the radial coordinate r in the metric of the extremal
Kerr BH

r −→ rH + ϵrHr with ϵ −→ 0

• But this redefinition gives rise to a degenerate metric. The
problem can be resolved by taking additional limits

t −→ αt
ϵ
, ϕi −→ ϕi + βi t

ϵ
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Near Horizon limit of an Extremal
Myers-Perry Black Hole



NHEMP

NHEMP geometry slightly differs in odd and even dimensions. For
that reason we introduce a unified description for arbitrary
dimensions

ds2

r2
H

= A(x ;σ)
(

−r2dτ2 + dr2

r2

)
+

Nσ∑
I=1

dxIdxI +
N∑

i ,j=1
γ̃ij(x , σ)xixjDφiDφj ,

where

Nσ = N + σ, σ =

0 when D = 2N + 1
1 when D = 2N + 2
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NHEMP

ds2

r2
H

= A(x ;σ)
(

−r2dτ2 + dr2

r2

)
+

Nσ∑
I=1

dxIdxI +
N∑

i ,j=1
γ̃ij(σ)xixjDφiDφj

• Latitudinal coordinates xI and rotation parameters mI are
restricted:

Nσ∑
I=1

x2
I

mI
= 1,

Nσ∑
I=1

1
mI

= 1 + 2σ
1 + σ

.

• One additional latitudinal coordinate in even dimensions

• Part of the metric is similar to AdS2
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NHEMP

The conformal SO(2, 1) symmetry

{H,D} = H, {H,K} = 2D, {D,K} = K , I = HK − D2

allows us to redefine r and its canonical conjugate momentum pr

so the Hamiltonian takes formally non-relativistic form1

H = 1
2p2

R + 2I(x , px , pφ)
R2 .

• R =
√

2K , pR = 2D√
2K are the “radius" and its canonical

conjugate momentum

• I is the Casimir element of SO(2, 1)
1Hakobyan:2009ac.
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NHEMP

Some important consequences...

• The radial part of the Hamiltonian is separated.

• We just need to study Casimir of SO(2, 1), which is called
angular mechanics.

• The variables φi are cyclic. Thus their canonically conjugate
momenta pφi are first integrals (in total N for both odd and
even dimensions).
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Fully non-isotropic NHEMP

Here we assume that none of the rotation parameters mI are equal
to each other

• Angular mechanics is

I = A(x)

Nσ−1∑
a,b=1

hab(x)papb +
N∑

i=1

p2
φi

x2
i

+ g0(pφ)


• Separation of variables takes place in ellipsoidal coordinates

x2
I = (mI − λI)

Nσ∏
J ̸=I

mI − λJ
mI − mJ

• Thus fully non-isotropic NHEMP is integrable for arbitrary
higher dimensions with Nσ + N + 1 first integrals
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Fully isotropic NHEM

Here we assume that all of the rotation parameters mI are equal to
each other. The angular mechanics is

IN =
N∑

i ,j=1
(η2(x)δij − xixj)pipj +

N∑
i=1

η2(x)p2
φi

x2
i

+ ω(pφi )
N∑

i=1
x2

i ,

• In odd dimensions

η2 = N, ω = 0

The system is a generalization of Higgs oscillator, known as
Rossochatius system.

• This is not the case in even dimensions.
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Fully isotropic NHEM

• Both of the systems admit separation of variables by
recursively introducing spherical coordinates

xNσ =
√

Nσ cos θNσ−1, xa =
√

Nσ x̃a sin θNσ−1,
Nσ−1∑
a=1

x̃2
a = 1,

• The systems also contain hidden symmetries, which
• make the odd dimensional Rossochatius system maximally

superintegrable

• make the even dimensional system superintegrable (lacking one
constant of motion to be maximally superintegrable)
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Partially isotropic NHEMP

Let’s discuss the simplest mixed case in odd (2N + 1) dimensions.
We have p non-equal rotation parameters and l equal rotation
parameters such that p + l = N

m1 ̸= m2 ̸= . . . ̸= mp ̸= κ, mp+1 = mp+2 = . . . = mN ≡ κ.

• Non of the BH rotation parameters is 0.

• Separation of variables is achieved by introducing a mixture of
spherical and ellipsoidal coordinates.
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Partially isotropic NHEMP

If l = 1 the spherical subsystem is trivial and does not produce new
integrals of motion. This is the fully non-isotropic integrable case.
If l ≥ 2 then

• The l − 1 dimensional spherical subsystem is maximally
superintegrable

# of first integrals 2(l − 1) − 1

• The non-isotropic system contains p integrals of motion

# of first integrals p + 2(l − 1) − 1 = (N − 1) + l − 2

In the fully isotropic (p = 0, l = N), the angular mechanics is
maximally superintegrable with 2N − 3 first integrals
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NH limit of Extremal Vanishing
Horizon MP BH (NHEVHMP)



NHEVHMP

NHEVHMP is obtained from the extremal MP metric by taking
one of the rotation parameters equal to 0 and obtaining the NH
limit. This results into a well defined solution of vacuum Einstein
equations.

ds2

r2
0

= F0(x)ds2
AdS3 +

N−1∑
a

dx2
a +

N−1∑
a,b

γ̃ab(x) xaxbdφadφb,

• Notice ds2
AdS3

term in the metric.

• The isometry contains SO(2, 1) × SO(2, 1) part.
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NHEVHMP

• Although we have two conformal groups, they give rise to the
same Casimir element. Thus we have a single angular
mechanics and no additional constants of motion compared to
non-EVH case.

• The rest of the discussion is the same for fully isotropic, fully
non-isotropic and generic cases.
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KG on NHEMP background



KG on NHEMP

Let’s discuss Klein-Gordon field in the background of NHEMP
black hole. We will bound the discussion to fully non-isotropic case
in odd (d = 2N + 1) dimensions.

□Φ = 1√
−g ∂α(

√
−ggαβ∂βΦ) = M2Φ ,

As one would expect, the separation of variables takes place in
elliptic coordinates as in the case of classical particles.

x2
I = (mI − λI)

Nσ∏
J ̸=I

mI − λJ
mI − mJ

where NHEMP has the following form

ds2

r2
H

= A(λ)
(

−r2dτ2 + dr2

r2

)
+

N−1∑
a=1

ha(λ)dλ2
a+

N∑
i ,j=1

γ̃ijxi(λ)xj(λ)DφiDφj
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KG in NHEMP

After calculating the inverse metric and metric determinant, KG
equation can be rewritten in the following form:

1
A(λ)

− 1
r2

[
∂

∂τ
−

N∑
i=1

rk i ∂

∂φi

]2

Φ+ r2∂2
r Φ+ 2r∂rΦ


+

N−1∑
a=1

ha∂2
λaΦ−

N−1∑
a=1

N∑
i=1

ha

mi − λa
∂λaΦ

+
N∑

i=1

1
x2

i
∂2
φiΦ−

N∑
i ,j=1

√
mi − 1
mi

√
mj − 1
mj

∂φi∂φjΦ = M2Φ .

The variables can be separated if we consider the following ansatz:

Φ = Rr (r) ·
N−1∏
a=1

Rλa(λa) · eiωτ ·
N∏

b=1
eiLbφb ,

where ω and Lb are constants.
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KG in NHEMP

The following equations describe the dynamics of r

r2 R ′′
r

Rr
+ 2r R ′

r
Rr

+ 1
r2

(
ω − r

N∑
i=1

k iLi

)2

= C2 .

and λa

− 4
λa

(
R ′′
λa

Rλa
−

R ′
λa

Rλa

N∑
i

1
mi − λa

) N∏
j=1

(mj − λa)

+ b
λa

C2

N∏
i=1

mi + (−1)N−1
N∑

i=1

gφi

mi − λa
+ g0(−λa)N−2 =

N−1∑
α=1

kαλα−1
a .

where C2, kα and gφi are constants.
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KG in NHEMP

After the following transformation,

z = 2 i ω
r ,

the radial equation becomes Whittaker’s differential equation
d2Rr
dz2 +

(
−1

4 + K
z + (1/4 − µ2)

z2

)
Rr = 0 ,

where K and µ are constants related to k i , Li and C2.

• The general solutions to this equation are Whittaker’s
functions : MK ,µ(z) and WK ,µ(z) which can be expressed
through confluent hypergeometric functions.

• Their behavior of Whittaker’s functions at r → 0 and r → ∞
strongly depend on the values of k i , Li and C2 and can be
used to put physical restrictions on these constants.
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KG on NHEVHMP background



KG on NHEVHMP

Let’s discuss Klein-Gordon field in the background of fully
non-isotropic, odd dimensional (d = 2N + 1) NHEVHMP black
hole.

□Φ = 1√
−g ∂α(

√
−ggαβ∂βΦ) = M2Φ ,

As one would expect, the separation of variables takes place in
elliptic coordinates as in the case of classical particles.

x2
I = (mI − λI)

Nσ∏
J ̸=I

mI − λJ
mI − mJ

where NHEVHMP has the following form

ds2 = F (λ)
(

−ρ2dτ2 + dρ2

ρ2 + ρ2dψ2
)

+
N−1∑
a=1

ĥadλ2
a +

N−1∑
a,b=1

γ̂ab x̂a(λ)x̂b(λ)dφadφb
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KG on NHEVHMP

After calculating the inverse metric and metric determinant, KG
equation can be rewritten in the following form:

1
F (λ)

(
−
∂2
τΦ− ∂2

ψΦ

ρ2 + ρ2∂2
ρΦ+ 3ρ∂ρΦ

)

+
N−1∑
a=1

1
x̂2

a
∂2
φaΦ−

N−1∑
a,b

1
√ma

1
√mb

∂φa∂φbΦ

+
N−1∑
a=1

ĥa∂2
λaΦ+

N−1∑
a=1

ĥa

λa
∂λaΦ−

N−1∑
a,b=1

ĥa

mb − λa
∂λaΦ = M2Φ .

The variables can be separated if we consider the following ansatz:

Φ = Rρ(ρ) ·
N−1∏
a=1

Ra(λa) · ei(−kτ τ+mψψ) ·
N−1∏
b=1

eiLbφb ,

where kτ ,mψ and Lb are constants. 22



KG on NHEVHMP

The dynamics of ρ is described by(
k2
τ − m2

ψ

ρ2 + ρ2∂2
ρ + 3 ρ ∂ρ

)
Rρ(ρ) = −4 Ĉ2 Rρ(ρ).

And for λa we have

4
(

R ′′
a

Ra
+ 1
λa

R ′
a

Ra
−

N−1∑
b=1

R ′
a/Ra

mb − λa

) N−1∏
c=1

(mc − λa)

− 4Ĉ2
λa

N−1∏
b=1

mb +
N−1∑
b=1

q̂φb

mb − λa
+ q̂0(−λa)N−2 =

N−1∑
α=1

kαλα−1
a

where q̂φb , q̂0 and kα are constants.
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KG on NHEVHMP

After the following transformation

Rρ(ρ) = u(ρ)
ρ

, and ρ =

√
k2
τ − m2

ψ

z ,

the radial differential equation becomes Bessel’s equation

z2 d2

dz2 u + z d
dz u +

(
z2 − ν2

)
u = 0, ν2 = 1 − 4Ĉ2

• The general solutions to this equation are Bessel function
Jν(z), Yν(z).

• Their behavior of these functions at r → 0 and r → ∞
restrict the value of C2.
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Equations



NHEMP geometry

ds2

r2
H

= A(x ;σ)
(

−r2dτ2 + dr2

r2

)
+

Nσ∑
I=1

dxIdxI +
N∑

i ,j=1
γ̃ij(x , σ)xixjDφiDφj ,

where

Nσ = N + σ, σ =

0 when D = 2N + 1
1 when D = 2N + 2

,

A(x) =
∑Nσ

I=1 x2
I /m2

I
σ

1+σ + 4
∑N

i<j
1

mi
1

mj

,

γ̃ij = δij + 1∑Nσ
I x2

I /m2
I

√
mi − 1xi

mi

√
mj − 1xj

mj
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First integrals of fully-non isotropic NHEMP

Fa(x , σ) = Kbc
(a)(x , σ) pbpc + Lij

(a)(x , σ) pφi pφj + A(a)(x , σ)m2
0r2

H

where

Kbc
(a) =

(
Nσ−a−1∑

α=0

(−1)Nσ+α−aAαmNσ−α−a
b + x2

b

Nσ−a−1∑
α=1

(−1)αM ̸=b
Nσ−α−a−1mα

b

)
δ

bc + M ̸=b,c
Nσ−a−1xbxc

Lij
(a) =

(
(1 − δ

1
a )

Nσ−a∑
α=1

(−1)Nσ+αAα−1mNσ−a−α+1
i − δ

1
a ANσ−1

)
δij

x2
i

+ (−1)a−1ANσ−a

√
mi − 1

mi

√
mj − 1

mj
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