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Elliptic gamma function
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Let us take definition of the Dedekind n-function and Jacobi

f1-function . . '
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where (a; q)oo = [[Z4(1 — ag), and for g = €>™'"
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0(z: ) = (2 @)oo(a2 ™1 @)oo (0.6)

Gor Sarkissian BLTP, YSU, Russia, Armenia

Elliptic, hyperbolic, complex gamma functions and physics in the various dimensions.



Elliptic beta integral

6
H ta = pq (0.7)
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(0.8)
where T is the unit circle of positive orientation and

_ (Pip)oc(di9)o

4ri (09)

Gor Sarkissian BLTP, YSU, Russia, Armenia

Elliptic, hyperbolic, complex gamma functions and physics in the various dimensions.



V-function
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W (E7)-group transformation laws:|

V(tla"'vtS;pa q) = H r(tjtk;p7 q) X (012)
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H T(ttk; p,q)V(st1,---,58: P, q)
5<j<k<8
s=pt, j=1234 (0.13)
sj = ptj, j=5,6,7,8 (0.14)
ty o tst
p—\/1234—\/ Pq (0.15)
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W (E7)-group transformation laws:l

4

V(tla"'ats;pv q) = H r(tjtk+4;p7 q) X (016)
jk=1

V(TY?/ty, . TY? [ty UM? Jts, .. UY? tg: p, q)

where T = titrt3ty and U = tstgtyts.
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W (E7)-group transformation laws:|I

V(tla"'vtS;pa q) = H r(tjtk;p7 q) X (017)
1<j<k<8

V(V/Pa/ti, .., /Pq/ts; p,q)
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4D Seiberg duality

The left-hand side of the univariate elliptic beta integral evaluation
formula (0.8) describes the superconformal index of the
supersymmetric quantum chromodynamics with SU(2) gauge
group and SU(6) flavor group. This theory has one vector
superfield (gauge fields) in the adjoint representation of SU(2) and
a set of chiral superfields (matter fields) in the fundamental
representation of SU(2) x SU(6). In the deep infrared region the
theory is strongly coupled, all colored particles confine, and one has
the Wess-Zumino type model for mesonic fields lying in the
15-dimensional totally antisymmetric tensor representation of
SU(6). The superconformal index of the latter theory is described
by the right-hand side expression of formula (0.8).
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where v()(y; w1, ws) is the hyperbolic gamma function.
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The function v()(y; w1, w,) has the integral representation

(2)( w1, wn) = ex _/°° sinh(2y — w1 — wy)x 2y w1 —wp A
T W, e2) = &P o\ 2sinh(w;x) sinh(wax) 2wiwax y

and obeys the equations:

1Oy +wiwnw) oy By twsienw) LTy
YA (y;wi,w2) wy Y3 (y; wr, w2) w1

ry(z)(uy wl, wz) — e—%TBQQ(U,W].,UJQ),Y(U; wl, wz)

where B 5(y; w1, w2) is the second order Bernoulli polynomial:

2 1 /w w 1
B2,2(y;w1,(,<)2): 4 —y—y+<1+2)+

w2 w1
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The function 7(2)(y;w1,w2) has the following asymptotics :

limyﬁooe%r32’2(“"“’“2)'7(2)(y;wl,wg) =1, argw; < arg y < arg wo+7,

in

limy o€ 2 Baa(yiwrw2)(2)(y- 1 wn) =1, arg wi—m < arg y < arg wo,

where B 5(y; w1, w2) is the second order Bernoulli polynomial.
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S =witw = Q (0.18)

1 ico H? 7(2)(,Uk + 2)7(2)(/% —z) dz _ H 7(2)(/1« i)
2 ) i 72)(2z)7(2)(-22) iz )

(0.19)
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W (E7)-group transformation laws: H-

8
> pi=2Q (0.20)
i=1

L I Pk 2)  dz

W)= I APwi+u) T AP+ w)h(vi) (0.22)

1<i<j<4 5<i<j<8
1 4
£ = 2(Q—Zlu,-) (0.23)

vi=ui+€& i=1234 vi=pu—§& i=56,7,8 (0.24)
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W (E7)-group transformation laws: H-II

8

4
1 1
Ml = 5 E - i M2 = E .55 i (025)
1= 1=

Vi:Ml_Mi i:1,2,3,4 I/,':Mz—,u,,‘ i:5,6,7,8 (026)
4

(i) = [T ¥ + 1tacsa)In(vi) (0.27)
jk=1
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W (E7)-group transformation laws: H-II

In(pi) = H 73 u,+uj)lh<§ u;) (0.28)

1<i<j<8
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we=f+iv k=123 pur=gx—iv k=456 z—o>z—iv
(0.29)

3
dx
2 3 (2)
/I. w1w2,.||17 (x+ )V (—x+g) ||v (fi+g;) (0.30)

ij=1

d(fite)=Q (0.31)

i

7@ (x, b, b7) = Sp(x) (0.32)
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3
/ I soc+ RSul—x+2) = [] Slfi+8) (039

ij=1

S(f+e)=Q (0.34)

1

Gor Sarkissian BLTP, YSU, Russia, Armenia

El c, hyperbol omplex gamma fur



fy—ico g3=Q—-—fh—h—-—f—g1—& (0.35)

/ exp (im[(y(fi+ f + g1+ &) + i — g182])

d
Sp(y + f)Sp(y + £2)Se(—y + 81)Sp(—y + g2)7y —
So(Q — o — fa— g1 — 8)Sp(f + 81)Sp(fL + &2) X
So(fa + 81)Sp(f2 + 82).
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Pentagon identity

h— —ico g —ico ht+g=a (0.36)

/ " epin(y(2a + g — @)Ss(y)Ss(—y + 8) Y

= expim(g(o — Q/2) + £°/2)Sp(Q — a — g)Sp(@) Sp(g)-

Example of 3D Seiberg duality: Mirror symmetry between N =2
SQED with two chiral multiplets and XYZ model on squashed
sphere:

bP(§ +x7) + 67208 +x3) = 1

Gor Sarkissian BLTP, YSU, Russia, Armenia

Elliptic, hyperbolic, complex gamma functions and physics in the various dimensions.



6j-symbols and fusion matrix

dz
ga / Z+f,,w1,W2 ) —z—l—g y W1, W2 )~
> ) oo 117 ) netes ):m

6j-symbols of the Faddeev modular quantum double:
Uq(Sl(27R) @ Ua(sl(27R), q = e7rib2 and C7 — e7rib*2.

Sp(as + aa — a1)Sp(ar + ar — as)
Sba + a2 — a3)Sp(az + as — aa)

al o2 as}
a3 a4 b

|S6(2cve) 2 Jn(p, v)
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V1 = Qs+ a1 —
r=Q+as—ay—a

V3 =05+ 03— 04
vp = Q+as —az — ay

pr=—Q —as+ar+as+az
U2 = —Qs — Q¢ + Q4 + Q2
p3 = Q — 20
s =0
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6j-symbols symmetries

2 4
In(p,v) = H Y (1 4 vi; wi, w2) H YA (4 viwi,wa) (0.
Jk=1 J,k=3

X Ip(p +m, p2 + 0, 13 — 1, pa — 1,
vi+n,v2 + 0,3 — 0, v — 1),

where 1
n= E(wl +wy — p1 — pp — v — ). (0.46)
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5 2
11 YO () + py2; wi, wo) 11 YO (W2 + pi wr, wa) x
Jrk=1 Jrk=1

J(G_VlaG_V2aQ_G_V3aQ_G_V4;
G—/,Ll,G—,U2,Q—G—,U3,Q—G—/L4)
where

ico 4 4
J(W/)Z/ [17® (2 + varwr, w2) [[vP (=2 + pai w1, w2)dz

—ico ;1 i=1
(0.48)
and G = %(Vl + vy + p1 + p2).
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ico 4 4
/. 12 + 20 P (g — zw)dz = T vPgj + fisw)
I j=1 Jk=1
ico 4
X / H7(2)(%Q— 6+z;w)’y(2)(%Q—gj—z;w)dz.
_IOOJ:]-
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Complex hypergeometric functions

nix
M(x,n) == r(2(+2n—)iX)’ €Z (0.50)
2
F(x,—n) =(-1)"T(x, n) (0.51)
F(x,mF(—x —2i,n) =1 (0.52)
_ 2 4 x2
M(x—2i,n) = 4 F(x,n) (0.53)
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Complex hypergeometric functions as limits from
hyperbolic integrals

Now set

“1_ivs, 50t
w2

Then wy + wy = 2§, /wiws + O(6?) — 0 and

P2 - Lit6+0(0%), = 1426482, 22 = —1-2i5+0(62).
w1 wy w1
Special choice of the argument u:
u=iywiwa(n+x9), neZ, xeC.
One can show that in this limit uniformly on the compacta

@ (iy/mrwa(n + x0); w1, wp) — (476)*LeZ ™ (x, ).
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Degeneration of the integrals.
Consider

ico dz ico dx
/—ioo A(Z) i\/ w12 B —ioco A( wlsz)T’ =

where A(z)  a product of 42 (u; wy,ws).

Vwiws’

Y (\u; Awr, o) = YO (0 w1, w0), A #£ 0.

Therefore wiws is any nonzero number: in QFT wiws = 1.
Rewrite

io (N+1/2) dx
A(ywiwz W1W2X Z/ A/ wrw2 x)T

—ico nez JiiN=1/2)

N+1/2 1/2
_ Z/ Alverm)d=Y | |, AivEza(N + x))dx.

nez/ N=1/2 NEZ
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Parametrise x = yJ, 6 > 0, and take the limit § — 0T

1/2
Z/ W1WQ(N+X))dX

nez” —1/2

1/25
= lims_0 Z / OA(i\/wiwa (N + yd))dy.

NezZ —1/26

The sum over N is infinite, for § — 01 the integration contour
becomes (—o0, 00). Uniformness of the limit =

=S [ ims oD AGVETEN + yO)] o

NezZ

Apply this limit to the general univariate hyperbolic beta integral.
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Parametrization of the integral kernel for (0.19):

1
z =iywiwa(N+dy), yeC, NeZ+v, V:O,E,

1
Uk = i\/wlwg(Nk + 5ak), a,€C, N.e€Z+v, v=0, >

The limit 6 — 0" = the balancing condition

6
Z Ny = 0.
k=1

The parameter v = 0,1/2 emerges because only the sums Ny = N
should be integers. Now, § — 0T limiting relations:

WE
£
I

k=1

6 _1)\2v
H (kEzw) = ((4 D Hr(ak“‘% Ni+N)F (ak—y, N—N),
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T "+ mw) = (1
. ! ' (4m0)°
1<j<k<6

H F(aj+ak,Nj+Nk),
1<j<k<6
(-1)% T(N+iy) T(-=N-—iy) _ (4m8)2
(4m0)2T(L+N—iy)F(1—N+iy) y2+ N2

y(2)(:|:22; w) —

The diverging factors (476)~> on both sides cancel.
The final complex beta integral evaluation formula:

6
1 o0
8r > / (v* + N?) T] Mo £ y, Ni = N)dy

NeZ+v ™~ k=1
= I ey +aw N+ N,
1<j<k<6
where 22:1 o = —2i, 22:1 N, =0, and
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F(x1 £ xo,nm £ ) =T+ x,m + m)l(x1 — x2,m — ).

Degeneration of the W/(E7)-group transformation laws:

o 8
> / (v* + N?) ] Mo £y, Ni = N)dy
> k=1

NeZ+v ™~
= (—1)L H Mo + ak, Nj + Ny) H Mo + ak, Nj + Ny)
1<j<k<4 5<j<k<8

) 4
X Z/ (2N T ety —2X—i, Ne=N-11L)

< [ Flax£y+3X+i, Ne £ N+ 3L)dy,
k=5
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with X := Zj}:l aj, L= 2?21 N; and the balancing

8 8

. 1
;ak:—m, ag € C, ;Nkzo, NkEZ+V,V:0,§.

Gor Sarkissian BLTP, YSU, Russia, Armenia

El hyperbol omplex gamma fi n the various d



6,-symbols of SL(2,C)

- Ni—No+Ms
2 r(01—02+ 2 — I ¥)
o1,Ny o2,N> leV’l} - P : 2
03,N3 04,Ns | po,M> 4

+ —N3—Na+M.
I'<—a3—04+p2—/,3++2>

- Np—Ng+M
M (02— 03+ py — i, =t

. Ny+NgtM
 (on o0+ py 7, g

X(_)(—N2+M2+/V4)j(R,-, Sii Ui, Tj)

X
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4
TR, Si Ui Ti) =) / dy [[F(Ri—y. =N+S)F(Ui+y, N+T))
N

i=1
(0.54)
. Ny + Ny — M
Ri=—01+00—p2—1, S = 1 22 2 (0.55)
. Ny + Ny — M
R2:01—|—02—p2—l, 52:# (0.56)
N3 + Ny + M
Ry = —03— 04— po— i, 53:—$ (0.57)
N3 — Ny — M
Ry =03 — 04 — p2 — i, 54:% (0.58)
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—M; — N N M
Ui = —p1—0o2+04+po2, T1 = ! 22+ 4+ Mo (0.59)

My — No+ Ny + My

Uy = p1 — 02 + 04 + p2, T > (0.60)
Us=0, T3=0 (0.61)
U4 = 2p2, T4 = M2 (062)
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2 4
JI(s,mt,m)=e™ T T(sj+ ti, nj + me) ] T(sj+ i nj + mi)
Jrk=1 Jk=3

Xj(51+Y7n1+K752+Y7n2+K753_Y7n3_K7S4_Y7n4_K;
tl+yam1+K7t2+Y7m2+K7t3_Y7m3_K7t4_Y7m4_K)7

K__”1+n2+m1+m2 y — si+s+t+t+2i
- 2 ) - 2 )
A= (n + n2)(m1 + my) + (n3 + ng)(ms + my) +

1

4
+5(1 - (—1)%F) <1+;ma> .
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ico 4
Z/ Hr(sk +y, Nk + N)I(tx — y, M — N)dy
NeZ v ' k=1

4
= (~1) %k M TT F(s+ i, Ny + My) (0.64
j,k=1
ico 4
x> TIT(=i = te+y, N = M)F(=i = s = y, =N — N)dy
NeZ Y 7' k=1
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