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Kähler Supermanifolds

An (even) (N|M)-dimensional Kähler supermanifold can be defined as a
complex supermanifold with symplectic structure given by the expression

Ω = ı(−1)pI (pJ+1)gI J̄dZ
I ∧ dZ̄ J , dΩ = 0, (1)

The ”matrix components” gI J̄ = ∂L

∂Z I
∂R

∂Z̄ J K (Z , Z̄ ),

The Poisson brackets
associated with this Kähler structure looks as follows

{f , g} = ı

(
∂R f

∂Z̄ I
g Ī J ∂

Lg

∂Z J
− (−1)pIpJ

∂R f

∂Z I
g J̄I ∂

Lg

∂Z̄ J

)
(2)

where g Ī JgJK̄ = δ Ī
K̄
, g Ī J = (−1)pIpJg J̄I .
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C̃P
N|M

by super-Hamiltonian reduction

Our goal is to study the systems on Kähler phase space with su(1,N|M)
isometry superalgebra.

For the construction of such a phase space it is
convenient, at first, to present the linear realization of u(1.N|M)
superconformal algebra on the complex pseudo-Euclidian superspace
C1.N|M , equipped with the canonical super-Kähler structure (and thus, by
the canonical supersymplectic structure), and then reduce it by the action
of u(1) generator.

Let us equip, at first, the (N + 1|M)-dimensional complex superspace with
the canonical symplectic structure

Ω0 = ı
N∑

a,b=0

γab̄dv
a ∧ dv̄b +

M∑
A=1

dηA ∧ d η̄A, (3)

with va, v̄a being bosonic, and ηA, η̄A being fermionic variables.
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C̃P
N|M

by super-Hamiltonian reduction

The matrix γab̄ is chosen in the form

γab̄ =


0 −i
i 0

−1
. . .

−1

 , a, b = N, 0, 1, ...,N − 1. (4)

With this supersymplectic structure we can associate the Poisson brackets
given by the relations

{va, v̄b} = −ıγb̄a, {ηA, η̄B} = {η̄B , ηA} = δAB̄ , γābγbc̄ = δāc̄ . (5)

Equivalently, {v0, v̄N} = 1, {vN , v̄0} = −1, (6)

{vα, v̄β} = ıδαβ̄, {ηA, η̄B} = {η̄B , ηA} = δAB̄ (7)

Here we introduced the indices α, β = 1, . . . ,N − 1.
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C̃P
N|M

by super-Hamiltonian reduction

On this superspace we can define the linear Hamiltonian action of
u(N.1|M) = u(1)× su(N.1|M) superalgebra

{hab̄, hcd̄} = −ı
(
had̄γ

c̄b − hcb̄γ
ād
)
, {ΘAā, hbc̄} = −ıΘAc̄γ

b̄a, (8)

{ΘAā, Θ̄B̄b} = hbāδ
BĀ − RAB̄γ

b̄a, {ΘAā,RCD̄} = −ıΘCāδ
DĀ, (9)

{RAB̄ ,RCD̄} = ı
(
RAD̄δ

BC̄ − RCB̄δ
DĀ
)
, (10)

where
hab̄ = v̄avb, ΘAā = η̄Ava, RAB̄ = ıη̄AηB . (11)

The u(1) generator defining the center of u(1.N|M) is given by the
expression

J = γab̄v
av̄b + ıηAη̄A : {J, hab̄} = {J,ΘAā} = {J,RAB̄} = 0. (12)
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C̃P
N|M

by super-Hamiltonian reduction

Hence, reducing the system by the action of generator J we will get the

”non-compact” projective super-space C̃P
N|M

(i.e. the supergeneralization

of non-compact projective space C̃P
N

), which is
(2N|2M)-(real)dimensional space.

For performing the reduction by the action of generator J we have to
choose, at first, the 2N real (N complex) bosonic and 2M real (N
complex) fermionic functions commuting with J. Then, we have to
calculate their Poisson brackets and restrict the them to the level surface

J = g . (13)

As a result we will get the Poisson brackets on the reduced (2N|2M)-(real)
dimensional space, with that u(1)-invariant functions playing the role of
the latter’s coordinates.

Erik Khastyan ”Aspects of Symmetry” 7 / 28



C̃P
N|M

by super-Hamiltonian reduction

Hence, reducing the system by the action of generator J we will get the

”non-compact” projective super-space C̃P
N|M

(i.e. the supergeneralization

of non-compact projective space C̃P
N

), which is
(2N|2M)-(real)dimensional space.

For performing the reduction by the action of generator J we have to
choose, at first, the 2N real (N complex) bosonic and 2M real (N
complex) fermionic functions commuting with J. Then, we have to
calculate their Poisson brackets and restrict the them to the level surface

J = g . (13)

As a result we will get the Poisson brackets on the reduced (2N|2M)-(real)
dimensional space, with that u(1)-invariant functions playing the role of
the latter’s coordinates.

Erik Khastyan ”Aspects of Symmetry” 7 / 28



C̃P
N|M

by super-Hamiltonian reduction

Hence, reducing the system by the action of generator J we will get the

”non-compact” projective super-space C̃P
N|M

(i.e. the supergeneralization

of non-compact projective space C̃P
N

), which is
(2N|2M)-(real)dimensional space.

For performing the reduction by the action of generator J we have to
choose, at first, the 2N real (N complex) bosonic and 2M real (N
complex) fermionic functions commuting with J. Then, we have to
calculate their Poisson brackets and restrict the them to the level surface

J = g . (13)

As a result we will get the Poisson brackets on the reduced (2N|2M)-(real)
dimensional space, with that u(1)-invariant functions playing the role of
the latter’s coordinates.

Erik Khastyan ”Aspects of Symmetry” 7 / 28



C̃P
N|M

by super-Hamiltonian reduction

The required functions could be easily found,

w =
vN

v0
, zα =

vα

v0
, θA =

ηA

v0
: {w , J} = {za, J} = {θA, J} = 0.

(14)

Notation:

A :=
1

v0v̄0

∣∣∣∣
J=g

=
1

g

ı(w − w̄)−
N−1∑
γ=1

zγ z̄γ + ı
M∑

C=1

θC θ̄C

 , (15)

we get the reduced Poisson brackets

{w , w̄} = −A(w − w̄), {zα, z̄β} = ıAδαβ̄, {θA, θ̄B} = AδAB̄ , (16)

{w , z̄α} = Az̄α, {w , θ̄A} = Aθ̄A. (17)
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C̃P
N|M

by super-Hamiltonian reduction

In what follows we will call this space ”noncompact projective superspace

C̃P
N|M

”. The isometry algebra of this space is su(N, 1|M), which can be
easily obtained by the restriction of u(N.1|M) = u(1)× su(N.1|M) algebra
to the level surface J = g .

It is defined by the following Killing potentials

H := vN v̄N |J=g =
ww̄

A
, K := v0v̄0|J=g =

1

A
, D := (vN v̄0 + v0v̄N)|J=g =

w + w̄

A
,

Hα := v̄αvN |J=g =
z̄αw

A
, Kα := v̄αv0|J=g =

z̄α

A
, hαβ̄ := v̄αvβ|J=g =

z̄αzβ

A
,

QA := η̄AvN |J=g =
θ̄Aw

A
, SA := η̄Av0|J=g =

θ̄A

A
, ΘAᾱ := η̄Avα|J=g =

θ̄Azα

A
,

RAB̄ := ıη̄AηB |J=g = ı
θ̄AθB

A
.
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C̃P
N|M

by super-Hamiltonian reduction

Constructed super-Kähler structure can be viewed as a higher
dimensional analog of the Klein model of Lobachevsky space, where
the latter is parameterized by the lower half-plane.

One can choose, instead of non-diagonal matrix , the diagonal one,
γab̄ = diag(1,−1, . . . ,−1). In that case the reduced Kähler structure
will have the Fubini-Study-like form.

Presented choice γab̄ is motivated by the by its convenience for the
analizing superconformal mechanics. In that case the generators
H,D,K define conformal subalgebra su(1.1) and are separated from
the rest su(1,N) generators.

Thus they can be interpreted as the Hamiltonian of conformal
mechanics, the generator of conformal boosts and the generator of
dilatation.
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su(1,N |M) Superconformal Algebra

”Bosonic” sector: su(1,N)× u(M)

Explicitly, the su(1.N) algebra is given by the relations

{H,K} = −D, {H,D} = −2H, {K ,D} = 2K ,

{H,Kα} = −Hα, {H,Hα} = {H, hαβ̄} = 0,

{K ,Hα} = Kα, {K ,Kα} = {K , hαβ̄} = 0,

{D,Kα} = −Kα, {D,Hα} = Hα, {D, hαβ̄} = 0,

{Kα,Kβ} = {Hα,Hβ} = {Kα,Hβ} = 0,

{Kα,Kβ} = −ıKδαβ̄, {Hα,Hβ} = −ıHδαβ̄,
{Kα, hβγ̄} = −ıKβδαγ̄ , {Hα, hβγ̄} = −ıHβδαγ̄ ,

{hαβ̄, hγδ̄} = ı(hαδ̄δγβ̄ − hγβ̄δαδ̄), {Kα,Hβ} = hαβ̄ +
1

2
(I − ıD) δαβ̄,
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{K ,Hα} = Kα, {K ,Kα} = {K , hαβ̄} = 0,

{D,Kα} = −Kα, {D,Hα} = Hα, {D, hαβ̄} = 0,

{Kα,Kβ} = {Hα,Hβ} = {Kα,Hβ} = 0,

{Kα,Kβ} = −ıKδαβ̄, {Hα,Hβ} = −ıHδαβ̄,
{Kα, hβγ̄} = −ıKβδαγ̄ , {Hα, hβγ̄} = −ıHβδαγ̄ ,

{hαβ̄, hγδ̄} = ı(hαδ̄δγβ̄ − hγβ̄δαδ̄), {Kα,Hβ} = hαβ̄ +
1

2
(I − ıD) δαβ̄,
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su(1,N |M) Superconformal Algebra

where

I := g +
N−1∑
γ=1

hγγ̄ +
M∑

C=1

RCC̄ (18)

The R-symmetry generators form u(M) algebra and commutes with all
generators of su(1,N):

{RAB̄ ,RCD̄} = ı(RAD̄δCB̄ − RCB̄δAD̄), {RAB̄ , (H;K ;D;Kα;Hα; hαβ̄)} = 0.

H,D,K form conformal algebra su(1, 1),the generators hαβ̄ form the
algebra u(N − 1), and all together - the su(1, 1)× u(N − 1) algebra.
Notice, I in defines the Casimir of conformal algebra su(1, 1):

I :=
1

2
I 2 =

1

2
D2 − 2HK . (19)

H → Hamiltonian, ⇒ Hα, hαβ̄,RAB̄ constants of motion.
K → Hamiltonian, ⇒ Kα, hαβ̄,RAB̄ constants of motion.
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su(1,N |M) Superconformal Algebra

”Fermionic” sector
The Poisson brackets between fermionic generators are as follows

{SA,SB} = KδAB̄ , {QA,QB} = HδAB̄ ,

{SA,QB} = −ıRAB̄ +
ı

2
(I − ıD) δAB̄ , {ΘAᾱ,ΘBβ̄} = RAB̄δβᾱ + hβᾱδAB̄ ,

{SA,ΘBᾱ} = KαδAB̄ , {QA,ΘBᾱ} = HαδAB̄ ,

{SA,SB} = {QA,QB} = {ΘAᾱ,ΘBβ̄} = {SA,QB} = {SA,ΘBᾱ} = {QA,ΘBᾱ} = 0.

Hence, the functions QA play the role of supercharges for the Hamiltonian
H, and the functions SA define the supercharges of the Hamiltonian K
playng the role of generator of conformal boosts.
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su(1,N |M) Superconformal Algebra

”Mixed” sector The mixed sector is given by the relations

{H,QA} = {H,ΘAᾱ} = 0, {H,SA} = −QA,

{K ,SA} = {K ,ΘAᾱ} = 0, {K ,QA} = SA,

{D,SA} = −SA, {D,QA} = QA, {D,ΘAᾱ} = 0

{QA,Kα} = −ΘAᾱ, {QA,Hα} = {QA, H̄α} = {QA, K̄α} = {QA, hαβ̄} = 0,

{SA,Hα} = ΘAᾱ, {SA,Kα} = {SA, K̄α} = {SA,Hα} = {SA, hαβ̄} = 0,

{ΘAᾱ,Kβ} = ıSAδβᾱ, {ΘAᾱ,Hβ} = ıQAδβᾱ,

{ΘAᾱ, H̄α} = {ΘAᾱ, K̄α} = 0, {ΘAᾱ, hβγ̄} = ıΘAγ̄δβᾱ,

{SA,RBC̄} = −ıSBδAC̄ , {QA,RBC̄} = −ıQBδAC̄ ,

{ΘAᾱ,RBC̄} = −ıΘBᾱδAC̄ .
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su(1,N |M) Superconformal Algebra

Looking at all the Poisson bracket relations together we conclude that

The bosonic functions Hα, hαβ̄ , and the fermionic functions QA, ΘAᾱ

commute with the Hamitonian H and thus, provide it by the
superintegrability property

The bosonic functions Kα, hαβ̄ and the fermionic functions SA,ΘAᾱ

commute with the generator K . Hence, the Hamiltonian K defines
the superintegrable system as well.

The triples (H,Hα,QA, ) and (K ,Kα, SA, ) transform into each other
under the discrete transformation

(w , zα, θA)→ (− 1

w
,
zα

w
,
θA

w
) ⇒ D → −D,

{
(H,Hα,QA, ) → (K ,−Kα,−SA),
(K ,Kα, SA) → (H,Hα,QA, )

.
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su(1,N |M) Superconformal Algebra

The bosonic functions Kα, hαβ̄ and the fermionic functions SA,ΘAᾱ

commute with the generator K . Hence, the Hamiltonian K defines
the superintegrable system as well.

The triples (H,Hα,QA, ) and (K ,Kα, SA, ) transform into each other
under the discrete transformation

(w , zα, θA)→ (− 1

w
,
zα

w
,
θA

w
) ⇒ D → −D,

{
(H,Hα,QA, ) → (K ,−Kα,−SA),
(K ,Kα, SA) → (H,Hα,QA, )

.

The functions hαβ̄,ΘAᾱ are invariant under this discrete
transformation. Moreover, they appear to be constants of motion
both for H and K . Hence, they remain to be constants of motion for
any Hamiltonian being the functions of H,K . In particular, adding to
the Hamiltonian H the appropriate function of K , we get the
superintegrable oscillator- and Coulomb-like systems with dynamical
superconformal symmetry .
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Canonical Coordinates

We define canonical coordinates as follows

w =
pr
r
− ı I

r2
, zα =

√
2πα
r

eıϕα , θA =

√
2

r
χA,

where

{r , pr} = 1, {ϕβ, πα} = δαβ, {χA, χ̄B} = δAB̄ , πa ≥ 0, ϕa ∈ [0, 2π), r > 0.

They expresses via initial ones as follows

pr =
w + w̄

2

√
2

A
, r =

√
2

A
, πα =

zαz̄α

A
, ϕα = arg(zα), χA = − θA√

A
,

where

I = g +
N−1∑
α=1

πα +
M∑

A=1

ıχ̄AχA , A :=
ı(w − w̄)− zγ z̄γ + ıθC θ̄C

g
=

2

r2
.
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Canonical Coordinates

In these canonical coordinates the isometry generators read

H =
p2
r

2
+

I 2

2r2
, K =

r2

2
, D = pr r ,

Hα =

√
πα
2
e−ıϕα

(
pr − ı

I

r

)
, Kα = r

√
πα
2
e−ıϕα , hαβ̄ =

√
παπβe

−ı(ϕα−ϕβ),

QA =
χ̄A

√
2

(
pr − ı

√
2I
r

)
, SA =

χ̄A

√
2
r , ΘAᾱ = χ̄A√παeıϕα , RAB̄ = ıχ̄AχB .

Interpreting r as a radial coordinate, and pr as radial momentum, we get
the superconformal mechanics with angular Hamiltonian given by

I :=
I0 + (χ̄χ)

2
, with I0 := g +

N−1∑
α=1

πα, (χ̄χ) :=
M∑

A=1

ıχ̄AχA .

Fermionic part of superconformal Hamiltonian is in its angular part.
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Canonical Coordinates

The explicit dependence of Hamiltonian H and of its supercharges QA and
on fermions is as follows

H = H0 +
I0(χ̄χ)

r2
+

(χ̄χ)2

2r2
, QA = − χ̄

A

√
2

(
pr − ı

I0
r
− ı(χ̄χ)

r

)
,

while the dependence of bosonic integrals Hα on fermions is given by the
expression

Hα = H0
α −

Kα(χ̄χ)

2K
,

where

H0 :=
p2
r

2
+

I 2
0

2r2
, H0

α =

√
πα
2
e−ıϕα

(
pr − ı

I0
r

)
: {H0

α,H
0} = 0.

So, proposed superconformal Hamiltonian H inherits all symmetries of
initial Hamiltonian H0 (given by H0

α, hαβ̄).
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Oscillator-like Systems

We define the supersymmetric oscillator-like system with the phase space

C̃P
N|M

by the Hamiltonian

Hosc = H + ω2K , (20)

In canonical coordinates it reads

Hosc =
p2
r

2
+

(g +
∑N−1

α=1 πα +
∑M

A=1 ıχ̄
AχA)2

r2
+
ω2r2

2
. (21)

This system possesses the u(N) symmetry given by the generators hαβ̄
(among them N − 1 constants of motion πα are functionally
independent),

the u(M) R-symmetry given by the generators RAB̄ , as well
as N − 1 hidden symmetries given by the generators

Mαβ = (Hα + ıωKα)(Hβ − ıωKβ) =
z̄αz̄β

A2
(w2 + ω2) : {Hosc ,Mαβ} = 0,
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Oscillator-like Systems

Mαβ = (Hα + ıωKα)(Hβ − ıωKβ) =
z̄αz̄β

A2
(w2 + ω2) : {Hosc ,Mαβ} = 0,

These generators and the su(N) generators hαβ̄ form the following
symmetry algebra

{hαβ̄,Mγδ} = ı
(
Mαδδγβ̄ + Mγαδδβ̄

)
, {Mαβ,Mγδ} = 0,

{Mαβ,Mγδ} = ı

(
4ω2Ihαδ̄hβγ̄ −

MαβM̄γδ

hαγ̄
δαγ̄ −

MαβM̄γδ

hαδ̄
δαδ̄ −

MαβM̄γδ

hβγ̄
δβγ̄ −

MαβM̄γδ

hβδ̄
δβδ̄

)
,

here summation over repeated indices is not assumed.

Besides, this system
has a fermionic constants of motion ΘAᾱ .
Hence, it is superintegrable system in the sense of super-Liuville theorem,
i.e. it has 2N − 1 bosonic and 2M fermionic, functionally independent,
constants of motion.
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Oscillator-like Systems

Let us show, that for the even M = 2k this system possess the deformed
N = 2k Poincaré supersymmetry, in the sense of paper
E. Ivanov and S. Sidorov, Deformed Supersymmetric Mechanics, Class.
Quant. Grav. 31 (2014) 075013 [arXiv:1307.7690 [hep-th]].
For this purpose we choose the following Ansatz for supercharges

QA = QA + ωCAB S̄B , (22)

with the constant matrix CAB obeying the conditions

CAB + CBA = 0, CABCBD = −δAD̄ (23)

For sure, the condition (23) assumes that M is an even number, M = 2k .

Erik Khastyan ”Aspects of Symmetry” 22 / 28



Oscillator-like Systems

Calculating Poisson brackets of the functions (22) we get

{QA, Q̄B} = HoscδAB , {QA,QB} = −ıωGAB , {Q̄A, Q̄B} = ıωḠAB ,

where

GAB := CACRBC̄ + CBCRAC̄ , GĀB̄ := ḠAB = C̄ACRCB̄ + C̄BCRCĀ, ḠAB = C̄AC C̄DBGDC .

Then we get that the algebra of generators QA, Hosc , GAB is closed
indeed:

{QA,Hosc} = ωCABQB , {GAB ,Hosc} = 0,

{QA,GBC} = ı(CABQC + CACQB),

{QA, ḠBC} = −ı(C̄BDQDδAC̄ + C̄CDQDδAB̄).

Hence, for the M = 2k the above oscillator-like system possesses deformed
N = 4k supersymmetry.
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Let us present other deformed N = 2M Poincaré supersymmetryc systems
whose bosonic part is different, but nevertheless, has the oscillator
potential.

For this purpose we choose another Ansatz for supercharges (in contrast
with previous case M is not restricted to be even number)

Q̃A = QA + ıωSA. (24)

These supercharges generates the su(1|M) superalgebra, and thus
generalizes the systems considered in paper by Ivanov and Sidorov to
arbitrary M,

{Q̃A,
¯̃QB} = HoscδAB − ωRA

B , {R B
A ,R D

C } = ı(R D
A δ

B
C −R B

C δ
D
A )

{Q̃A,RC
B} = ı

(
1
M Q̃AδBC̄ + Q̃BδAC̄

)
, {Q̃A,Hosc} = ıω 2M−1

M Q̃A,

where Hosc := Hosc−ω(I + 1
M

∑
C RCC̄ ), R B

A := RAB̄− 1
M δ

B
A

∑
C RCC̄ .

Hence, the Hamiltonian get the additional bosonic term proportional to
the casimir of conformal group.
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Coulomb-like Systems

We define the supersymmetric Coulomb-like system with the phase space

C̃P
N|M

by the Hamiltonian

HCoul = H +
γ√
2K

. (25)

The bosonic constants of motion of this system are given by the u(N − 1)
symmetry generators hαβ , and by the N − 1 additional constants of
motion

Rα = Hα + ıγ
Kα

I
√

2K
: {HCoul ,Rα} = {HCoul , hαβ̄} = 0.

These generators form the following algebra

{Rα, R̄β̄} = −ıδαβ̄

(
HCoul −

ıγ2

2I 2

)
+
ıγ2hαβ̄

2I 3
, {hαβ̄,Rγ} = ıδγβ̄Rα, {Rα,Rβ} = 0.
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Coulomb-like Systems

Besides, proposed system has 2M fermionic constants of motion given by
ΘAᾱ, and u(M) R-symmetry charges given by RAB̄ .

Hence, it is superintegrable in the sense of super-Liuville theorem. So, we
constructed the maximally superintegrable Coulomb problem with
dynamical SU(1,N|M) superconformal symmetry which inherits all
symmetries of initial bosonic system.

One can expect, that in analogy with oscillator-like system, our
Coulomb-like system would possess (deformed) N = 2M-super-Poincaré
symmetry for M = 2k and γ > 1.
However, it is not a case.
So, proposed superextensions of Coulomb-like systems, being well-defined
from the viewpoint of superintegrability, do not possess neither N = 2M
supersymmetry, nor its deformation. The su(1,N|M) superalgebra plays
the role of dynamical algebra of that systems.
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Conclusion

We have suggested to construct the su(1,N|M)-superconformal
mechanics formulating them on phase superspace given by the
non-compact analog of complex projective superspace CPN|M . The
su(1,N|M) symmetry generators were defined there as a Killing
potentials of CPN|M .

We parameterized this phase space by the specific coordinates
allowing to interpret it as a higher-dimensional super-analog of the
Lobachevsky plane parameterized by lower half-plane (Klein model).

Then we transited to the canonical coordinates corresponding to the
known separation of the ”radial” and ”angular” parts of
(super)conformal mechanics.

We also proposed the superintegrable oscillator- and Coulomb- like
systems with a su(1,N|M) dynamical superalgebra, and found that
oscillator-like systems admits deformed N = 2M Poincaré
supersymmetry, in contrast with Coulomb-like ones.
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The End

Thank You!
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