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Liouville equation

∂2
zz̄ ϕ(z, z̄) + µ2 e2ϕ(z,z̄) = 0

The general solution

ϕ(z, z̄) =
1

2
log

A′(z) Ā′(z̄)

[1 + µ2A(z)Ā(z̄)]2

Liouville 1853

z = τ + σ and z̄ = τ − σ are chiral (light-cone) coordinates

τ is time and σ is the spatial coordinate

µ2 > 0 is constant

(∂2
ττ − ∂2

σσ)ϕ+ 4µ2 e2ϕ = 0

— 3/33



Motivation

• Non-critical strings Polyakov 1981

• 2d CFT strings Curtright, Thorn 1982, Belavin, Polyakov, Zamolodchikov 1984

• 2d gravity Teitelboim 1983, Jackiw 1985, Polyakov 1988, Seiberg 1990

• Gauged WZW models O’Raifeartaigh,... 1989, Alekseev, Shatashvili, 1990

• D-brane dynamics Zamolodchikov, Zamolodchikov 1999, Teshner 2000

• AGT duality Alday, Gaiotto, Tachikawa 2009

• SYK model Maldacena, Stanford 2016, Jevicki 2017,...

• Schwarzian theory Stanford, Witten, 2017, ...

• High-dimensional LT Levy, Oz ... 2018-2019
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Non-critical strings

String theory in the conformal gauge

∂2
zz̄X

µ(z, z̄) = 0

Conformal and Poincare symmetries are compatible in d = 26

Liouville equation for one mode

∂2
zz̄Xd(z, z̄) + µ2 e2Xd = 0
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Liouville theory as a model of 2d gravity

Conformal gauge

gµν = e2ϕ

(
0 1
1 0

)
Scalar curvature

R = 8 e−2ϕ ∂2
zz̄ϕ

Constant negative curvature R = −8µ2 is equivalent to

∂2
zz̄ϕ+ µ2 e2ϕ = 0

2d gravity model

Rµν −
1

2
µ2 gµν = 0
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Liouville theory as a 2d CFT

Conformal transformations

z 7→ ζ(z) z̄ 7→ ζ̄(z̄)

ζ ′(z) > 0 ζ̄ ′(z̄) > 0

Conformal symmetry

the space of solutions of the Liouville equation is invariant under

ϕ(z, z̄) 7→ ϕ(ζ(z), ζ̄(z̄)) +
1

2
log ζ ′(z)ζ̄ ′(z̄)

Primary fields Vβ = e2βϕ

Vβ(z, z̄) 7→ (ζ ′(z)ζ̄ ′(z̄))β Vβ(ζ(z), ζ̄(z̄))
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Energy-momentum tensor

Chirality

T = (∂zϕ)2 − ∂2
zzϕ , T̄ = (∂z̄ϕ)2 − ∂2

z̄z̄ϕ

∂z̄T = 0 = ∂zT̄ Poincare

T (z) = Tzz T̄ (z̄) = Tz̄z̄

Energy density

E = T + T̄ =
1

2
(∂τϕ)2 +

1

2
(∂σϕ)2 + 2µ2 e2ϕ − ∂2

σσϕ

Momentum density

P = T − T̄ = ∂τϕ∂σϕ− ∂2
τσϕ
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NET Poisson brackets

V = e−ϕ

{V (z, z̄), V (y, ȳ)} =
1

4

(
sign(z − y) + sign(z̄ − ȳ)

)
×
(
V (z, z̄)V (y, ȳ)− 2V (z, ȳ)V (y, z̄)

)
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Periodic boundary conditions

Periodic Liouville field ϕ(τ, σ + 2π) = ϕ(τ, σ)

ϕ(z, z̄) =
1

2
log

A′(z) Ā′(z̄)

[1 + µ2A(z)Ā(z̄)]2

The class of parameterizing chiral fields:

A′(z) > 0, Ā′(z̄) > 0

A(z + 2π) = e2πpA(z) Ā(z̄ + 2π) = e2πpĀ(z̄)

with p > 0
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Free-field parameterization

Free-field

ϕin(τ, σ) =
1

2
log A′(z)Ā′(z̄)

Chiral and mode decomposition

ϕin(z, z̄) = φ(z) + φ̄(z̄)

φ(z) = q +
pz

2
+ i
∑
n6=0

an
n
e−inz =

pζ(z)

2
+

1

2
log ζ ′(z)

The equation A′(z) = e2φ(z) is integrated to

A(z) =

∫ z

−∞
dy e2φ(y)

Free-field parameterization of the Liouville field

e−ϕ(τ,σ) = e−ϕin(τ,σ)
[
1 + µ2A(z)Ā(z̄)

]
— 11/33



Poisson brackets structure

’Improved’ form

T (z) = φ′ 2(z)− φ′′(z) T̄ (z̄) = φ̄′ 2(z̄)− φ̄′′(z̄)

From the canonical brackets

{φ′(z), φ(y)} =
1

2
δ(z − y)

follows

{T (z), e2βφ(y)} =
(
e2βφ(y)

)′
δ(z − y)− β e2βφ(y)δ′(z − y)

{T (z), A(y)} = A′(y)δ(z − y)

2d conformal algebra

{T (z), T (y)} = T ′(y) δ(z − y)− 2T (y) δ′(z − y) +
1

2
δ′′′(z − y)
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Asymptotic fields

The time asymptotic behavior

e−ϕin(τ,σ) ∼ e−pτ µ2e−φ(τ,σ)A(z)Ā(z̄) ∼ epτ

Since p > 0
e−ϕin(τ,σ) → 0 τ →∞

µ2e−ϕin(τ,σ)A(z)Ā(z̄)→ 0 τ → −∞

Liouville field in terms of the asymptotic fields

e−ϕ(τ,σ) = e−ϕin(τ,σ) + e−ϕout(τ,σ)

The out-field in terms of the in-field

e−ϕout(τ,σ) = µ2 e−ϕin(τ,σ)A(z)Ā(z̄)
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Chiral structure of the map

From the chiral structure of the free-fields follows

φout(z) = φin(z)− logµAin(z) φ̄out(z̄) = φ̄in(z̄)− logµĀin(z̄)

The map preserves the stress tensor

φ′ 2out(z)− φ′′out(z) = φ′ 2in(z)− φ′′in(z)

The S-matrix has a chiral structure

It is conformally invariant: [S, T (z)] = 0
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Canonical map from the in field to the out field

Canonical transformation at a fixed τ

ϕout(σ) = ϕin(σ)− logµ2Ain(σ) Āin(−σ)

πout(σ) = πin(σ)− A′in(σ)

Ain(σ)
− Ā′in(−σ)

Āin(−σ)

The generating functional

δG(ϕout, ϕin) =

∫ 2π

0
dσ[πin(σ)δϕin(σ)− πout(σ)δϕout(σ)]

Semi-classical S-matrix

〈ϕout |ϕin〉 = e−
i
~ G(ϕout,ϕin)
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The semi-classical S-matrix

The solution for the generating functional

G =

∫ 2π

0
dσ

[
λ(σ) +

ϕ−
′(σ)

2
log

λ(σ)− ϕ−′(σ)

λ(σ) + ϕ−′(σ)

]

λ(σ) =
√
ϕ′2−(σ) + 4µ2eϕ+(z)

ϕ±(σ) = ϕin(σ)± ϕout(σ)

No explicit chiral structure is observed.
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The chiral canonical form

The chiral canonical 1-form

pδq +
i

2

∑
n>0

1

n
(a∗nδan − anδa∗n)

The chiral-fields mode-expansion

φin(z) = q +
pz

2
+ i
∑
n6=0

an
n
e−inz

φout(z) = q̃ +
p̃z

2
+ i
∑
n6=0

bn
n
e−inz

Since the map is canonical

−(q + q̃)δp+ 2i
∑
n>0

1

n
(a∗nδan + bnδb

∗
n) = δF (p, b∗, a)
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Generating function

The generating function F (p, b∗, a) satisfies the equations

∂F

∂p
= −(q + q̃)

∂F

∂am
=

2i

m
a∗m

∂F

∂b∗m
=

2i

m
bm

with m > 0.

Here the right hand sides are treated as functions of (b∗, p, a),
with b∗ := (b∗1, b

∗
2, . . . ) and a := (a1, a2, . . . ).

Quantum mechanical interpretations of F (b∗, p, a)?

The p-dependent (p > 0) vacuum state for the chiral in-field

p̂|p, 0〉 = p|p, 0〉 âm|p, 0〉 = 0 for m > 0

The out-field ’bra’ vectors 〈b∗, p̃| are given similarly.
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Holomorphic semi-classical S-matrix

The coherent states are constructed by

|p, a〉 = exp

(
2

~
∑
m>0

1

m
am â

†
m

)
|p, 0〉

From the canonical commutators follow

âm |p, a〉 = am |p, a〉 â†m |p, a〉 =
~m
2

∂

∂am
|p, a〉

〈b∗, p̃| b̂†m = b∗m 〈b∗, p̃| 〈b∗, p̃| b̂m =
~m
2

∂

∂b∗m
〈b∗, p̃|

To analyze the matrix elements 〈b∗, p′|p, a〉, we insert canonical operators

〈b∗, p̃| ˆ̃p+ p̂|p, a〉 = (p̃+ p)〈b∗, p̃|p, a〉
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Holomorphic semi-classical S-matrix

Since ˆ̃p = −p̂, the left hand side of the first equation vanishes and

〈b∗, p̃|p, a〉 = S(b∗, p, a) δ(p+ p̃)

Assuming that the classical relations are valid on the quantum level

i~
∂S
∂p

=
∂F

∂p
S ~

∂S
∂am

= −i ∂F
∂am

S ~
∂S
∂b∗m

= −i ∂F
∂b∗m

S

These equations lead to

S(b∗, p, a) = e−
i
~ F (b∗, p, a) .

Setting here b∗ = a∗, we conclude that e−
i
~ F (a∗, p, a) describes the normal

symbol of the S-matrix semi-classically.
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Virasoro generators

The mode-expansions of the stress-tensor

T (x) =
∑
n∈Z

Ln e
−inx

provides Ln’s in the Fourier modes of the in-field

L0 =
1

4
p2 +

∑
k 6=0

a−k ak Ln = (p+ i n)an +
∑
k,l 6=0

ak al δk+l,n (n 6= 0)

and the out-field mode expansion is obtained by the replacements
p 7→ −p, an 7→ bn.

The equality between Ln’s of the in and out-fields leads to the equations

|n|(|n|+ ip)
∂F

∂an
= 2i(|n| − ip)a−n − i

∑
k,l 6=0

[ε(k)− ε(l)] |l| ak
∂F

∂a−l
δk+l+n

+
∑
k,l 6=0

[ε(k) + ε(l)]

(
ak al +

|k| |l|
4

∂F

∂a−k

∂F

∂a−l

)
δk+l+n
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Solutions for the generating function

Equation for n = 0 ∑
k 6=0

k ak
∂F

∂ak
= 0

A monomial an1 · · · anν is a solution of this linear equation if
n1 + · · ·+ nν = 0.

The function F then is represented in the form

F = F (0)+
∑
ν≥2

F (ν) , with F (ν) =
∑
n1...nν

f (ν)
n1...nν (p) δn1+···+nν an1 · · · anν

where the expansion coefficients f
(ν)
n1...nν are symmetric under the

permutation of the indices.

— 22/33



Solutions for the generating function

f
(2)
n−n = f

(2)
−nn =

i

|n|

(
|n| − ip
|n|+ ip

)

f (3)
n1 n2 n3

= −4i p

3

ε(n1) ε(n2) ε(n3)

(|n1|+ ip)(|n2|+ ip)(|n3|+ ip)

f (4)
n1 n2 n3 n4

=
2 p

3

4∏
α=1

(
ε(nα)

|nα|+ ip

)
Un1 n2, n3

Un1 n2 n3 =

(
1− ip

|n1 + n2|+ ip
− ip

|n2 + n3|+ ip
− ip

|n3 + n1|+ ip

)
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Solutions for the generating function

Starting from ν = 4, the following recursive relations hold

|n| (|n|+ ip)
∂F (ν+1)

∂an
=

∑
k,l 6=0

[(
[ε(k) + ε(l)]

|k|
2

∂F (2)

∂a−k
− i [ε(k)− ε(l)] ak

)
|l| ∂F

(ν)

∂a−l

+ [ε(k) + ε(l)]
|k| |l|

4

ν−1∑
j=3

∂F (j)

∂a−k

∂F (ν+2−j)

∂a−l

]δk+l+n

f (ν)
n1...nν =

(2i)ν

ν!
p

ν∏
j=1

(
ε(nj)

|nj |+ ip

)
Un1...nν−1 ,
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Particle model

Classical equation
ϕ̈(τ) + 4µ2 e2ϕ(τ) = 0

General solution

e−ϕ(τ) = e−q−pτ +
µ2

p2
eq+pτ

Canonical transformation

pout = −pin = −p qout = −q + 2 log(p/µ)

Generating function

−(qin + qout)δp = δF (p) F (p) = −2p[log(p/µ)− 1]

The reflection amplitude

R(p) = e
2ip
~ log(~/µ) Γ(ip/~)

Γ(−ip/~)
∼ e−

i
~ F (p) ~ 7→ 0
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Quantization

Canonical quantization [φ(z), φ′(y)] = − i~
2 δ(z − y)

The Hilbert space L2(R+)⊗F

F is the Fock space

The vacuum state |p; 0〉 (p > 0)

Normal ordered operators

T (z) =: φ′ 2(z) : −ηφ′′(z) e2βφ(z) =: e2βφ(z) :

The condition

[T (z), e2φ(y)] =
(
e2φ(y)

)′
δ(z − y)− e2φ(y)δ′(z − y)

defines η = 1 + ~ (~ = b2)
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Quantum Virasoro generators

quantum Virasoro generators are defined as follows

L̂m = (p̂+ imη)âm +
∑
j,j′≥1

âj âj′ δj+j′,m + 2
∑
j>0

â†j âm+j

L̂0 =
1

4
(p̂2 + η2) + 2

∑
j≥1

â†j âj

L̂−m = (p̂− imη)â†m +
∑
j,j′≥1

â†j â
†
j′ δj+j′,m + 2

∑
j≥1

â†n+j âj
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Vertex operators and the reflection amplitude

Conformal properties and locality fixes the vertex operator

V (τ, σ) = e−ϕin(τ,σ) + µ2
b : e−ϕin(τ,σ)A(z)Ā(z̄) :

S-matrix
e−ϕin(τ,σ) S = µ2

b S e−ϕin(τ,σ)A(z)Ā(z̄)

The vacuum sector
S |p; 0〉 = R(p) | − p; 0〉

Equation for R(p)

R(p) =
µ2
b Γ(−ip− b2) Γ(ip)

Γ(1 + ip+ b2) Γ(1− ip)
R(p− ib2)

Solution

R(p) = −
(
µ2
b Γ2(b2)

)− ip

b2
Γ
(
ip/b2

)
Γ (−ip/b2)

Γ(ip)

Γ(−ip)
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The structure of S-matrix

S-matrix
S = P R(p)Sp(an)Sp(ān)

P is the parity operator

P pP = −p P qP = −q

Sp does not depend on q

Sp |p; 0〉 = |p; 0〉

The conformal symmetry
[S, T (z)] = 0

provides the operator relations

SpLn(p) = Ln(−p)Sp
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Equation for the S-matrix

Projecting the operator equations between the coherent states

〈a∗| Ŝ L̂n(p̂) |p, a〉 = 〈a∗| L̂n(−p̂) Ŝ |p, a〉

Representing S in the form

S = R(p) e−
i
~Fq

one finds that R(p) is canceled in the equations and Fq satisfies

|n|
2

(|n|η + ip)
∂Fq
∂an

= i(|n|η − ip)a−n −
i

2

∑
k,l 6=0

[ε(k)− ε(l)] |l|ak
∂Fq
∂a−l

δk+l+n

+
1

2

∑
k,l 6=0

[ε(k) + ε(l)]

[
ak al +

|k||l|
4

(
∂Fq
∂a−k

∂Fq
∂a−l

+ i~
∂2Fq

∂a−k∂a−l

)]
δk+l+n
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Transition amplitudes

f
(q,2)
−1 1 = i

1 + ~− ip
1 + ~ + ip

,

f
(q,3)
−1−1 2 =

−4ip(1 + ~)

3(1 + ~ + ip)(1 + 2~ + ip)(2 + ~ + ip)
= −f (q,3)

−2 1 1

f
(q,4)
−1−1 1 1 =

−4p(1 + ~)

3(1 + ~ + ip)2(1 + 2~ + ip)(2 + ~ + ip)

f
(q,2)
−2 2 =

i(2 + 7~ + 7~2 + 2~3)− (3 + 5~ + 3~2)p− p3

2(1 + ~ + ip)(1 + 2~ + ip)(2 + ~ + ip)

f
(q,6)
−1−1−1 1 1 1 =

32p(1 + ~)(1 + ~− ip)
15(1 + ~ + ip)3(1 + 2~ + ip)(1 + 3~ + ip)(2 + ~ + ip)(3 + ~ + ip)
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Scattering and bound states

The conformal group orbit for a constant negative stress tensor T = − θ2

4

φ(z) =
iθζ(z)

2
+

1

2
log ζ ′(z)

The mode expansion

φ′(z) =
iρ

2
+
∑
n 6=0

an e
−inz

Canonical commutation relations

[am, an] = ~mδm+n,0

However,
a†−n 6= an a†n = bn

The Fock space with the vacuum state |θk, 0〉
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Summary and outlook

We have derived equations for the generating function of the canonical
transformation between the in and out fields of Liouville theory in the
holomorphic variables.

We have calculated semi-classical S-matrix in a compact form.

We have derived equations for the normal symbol of S-matrix.

A closed form of the amplitudes have been found for scattering of Liouville
particles (up to 8).

• Boundary Liouville theory and bound states.

• High-dimensional Liouville theory

• String in the static gauge
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