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Liouville equation

0% () & i 2) = 0

The general solution

Liouville 1853

z =T+ 0 and Z =T — o are chiral (light-cone) coordinates

T is time and o is the spatial coordinate

u? > 0 is constant

(02, — 02, ) +4p* ¥ =0
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Motivation

e Non-critical strings Polyakov 1981

e 2d CFT strings Curtright, Thorn 1982,  Belavin, Polyakov, Zamolodchikov 1984
e 2d gravity Teitelboim 1983, Jackiw 1985, Polyakov 1988, Seiberg 1990

e Gauged WZW models O'Raifeartaigh,... 1989, Alekseev, Shatashvili, 1990

e D-brane dynamics Zamolodchikov, Zamolodchikov 1999, Teshner 2000
o AGT duality Alday, Gaiotto, Tachikawa 2009

e SYK model Maldacena, Stanford 2016, Jevicki 2017,...

e Schwarzian theory Stanford, Witten, 2017, ...

e High-dimensional LT  Levy, Oz ... 2018-2019
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Non-critical strings

String theory in the conformal gauge
D2 XH(2,2) =0
Conformal and Poincare symmetries are compatible in d = 26

Liouville equation for one mode

0% X a(2,2) + p? e*¥4 = 0
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Liouville theory as a model of 2d gravity

01
— 20
G = € <1 O>

R=8e¢ 9% ¢

Conformal gauge

Scalar curvature

Constant negative curvature R = —8u? is equivalent to
D2z +p*e* =0
2d gravity model

1
R, —

2
i Juv =0
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Liouville theory as a 2d CFT
Conformal transformations
z = ((2) zZ = ((2)

¢'(z) >0 ¢'(2) >0

Conformal symmetry

the space of solutions of the Liouville equation is invariant under

p2,2) > plC(2),8E) + 5 g (=) (3)

Primary fields Vg = e2Be

Va(z,2) = (C'(2)C'(2)7 VB(((2), C(2))
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Energy-momentum tensor

Chirality
T = (0.0)* - 9% 0, T = (9:9)* — 0%
;T =0=0,T Poincare
T(z)="T.. T(z) =Tz

Energy density

1
(0r0) + 5 (000)” + 2% €% — 0Z
Momentum density

P=T-T =000, — 0 ¢
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NET Poisson brackets
V=e"%

o~ =

[V(,2),V(y.9)} = 1 (sign(z — y) + sign(z — 7))

x (V= 2)V(9) = 2V (2 0)V (5, 2))

G.J, G. Weigt; 2001
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Periodic boundary conditions

Periodic Liouville field p(1,0 4 27) = ¢(T,0)

The class of parameterizing chiral fields:
Al(z)>0, A(2)>0

Az +27) = ¥ A(2) A(Z 4 271) = ¥ A(2)
with p > 0
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Free-field parameterization

Free-field .
Oin(T,0) = 3 log A'(2)A'(2)

Chiral and mode decomposition

pin(2,2) = ¢(2) + 6(2)

n _—inz 1 /
¢(z):q+p2z+i7§0ile :pgz(z)+2logC(z)

The equation A’(z) = ¢*(*) is integrated to
Az) = / dy 29W)
Free-field parameterization of the Liouville field

e—gp(T,O’) — e—Win(Tvo') [1 -+ #214(2:)14(2)]
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Poisson brackets structure

'Improved’ form
T(:) =) - ¢'z) () =3%) - '(3)
From the canonical brackets
19/(2),6(0)} = 56~ 9)
follows

[T(2), 260} = (259000 5z — y) — 25§ (2 — y)

{T(2), Aly)} = A'(y)d(2 — y)

2d conformal algebra

(T(), ()} = T'(5) 6(= — ) ~ 27(3) (= — ) + 56" (= ~ )
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Asymptotic fields
The time asymptotic behavior
e~ Pin(1.0)  oPT u26_¢(T’”)A(z)A(2) ~ ePT

Since p >0
e ¢in(10) T — 00

ple P A(A(Z) -0 7= —o0
Liouville field in terms of the asymptotic fields
6_%’(730) — e_‘Pin(TvU) + e_‘Pout(TaU)
The out-field in terms of the in-field

e—soout(T»U) _ M2 e—cpm(f,a) A(Z)/_l<2)
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Chiral structure of the map

From the chiral structure of the free-fields follows
Dout(2) = Pin(2) — log pAin(z) Pout(Z) = bin(2) — log pAn(2)
The map preserves the stress tensor
Fout(2) = Dour(2) = D (2) = Pl (2)
The S-matrix has a chiral structure

It is conformally invariant: [S,T(z)] =0
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Canonical map from the in field to the out field

Canonical transformation at a fixed 7

Pout(0) = pin(0) — log MZAM(U) Ain(_a)

7Tout(g) = Win(a) - -
The generating functional
2T
5G((pout7 Spin) = A do'[ﬂ'in(o')&pin(o') - 7"'out(o')&)pout(0')]
Semi-classical S-matrix

<900ut ’ @m) = e_% G(pout,Pin)
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The semi-classical S-matrix

The solution for the generating functional

o / dg[ =(0) g 20) '

\/@/2 —|—4ILL ep+(2)

9+(0) = Qin(0) £ Yout(a)

No explicit chiral structure is observed.
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The chiral canonical form

The chiral canonical 1-form

1 1
poq + 5 Z E(awan — apda))
n>0

The chiral-fields mode-expansion

~ ﬁZ . bn —inz
z) = 1 E —e
¢out( ) q + + n
Since the map is canonical

1
—(q+q)op+2i)y_ ~(aydan + bndb},) = 3F(p, b, a)

n>0
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Generating function

The generating function F'(p, b*, a) satisfies the equations

OF L. OF _%. oF _u,
op ¢Ta 0ay, m " obx,  m
with  m > 0.

Here the right hand sides are treated as functions of (b*,p,a),
with b* := (b7,05,...) and a := (a1, a2, ...).

Quantum mechanical interpretations of F'(b*,p,a)?

The p-dependent (p > 0) vacuum state for the chiral in-field
plp,0) = p|p, 0) am|p,0) =0 for m >0

The out-field 'bra’ vectors (b*, p| are given similarly.
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Holomorphic semi-classical S-matrix

The coherent states are constructed by

2 1 R
‘p7 a) = €xXp (FL Z Eam ain) ’pa 0)
m>0
From the canonical commutators follow
h 0
i lp, ) = an|p,a) by p,a) = 75" 5~ Ip,a)
S - i hm 0 .
(v, pIbY, = bf, (0%, 5] (0", plbm = — =— (b, |
2 0by,

To analyze the matrix elements (b*, p'|p, a), we insert canonical operators

(v*,8lp + plp,a) = (5 +p)(b". blp, a)
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Holomorphic semi-classical S-matrix

Since p = —p, the left hand side of the first equation vanishes and
(0%, plp, a) = S(b*,p,a) 6(p + p)
Assuming that the classical relations are valid on the quantum level

GOS8 _OF o095 L OF as . OF

ap  Op D D o - oo S

These equations lead to
S p,a) = e O

Setting here b* = a*, we conclude that e~ % F(a%,p.a) describes the normal
symbol of the S-matrix semi-classically.
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Virasoro generators

The mode-expansions of the stress-tensor
T(@) = Y Lyeine
neZ
provides L,'s in the Fourier modes of the in-field

1
L():ZPQ-FZG_kak L,=(p+in)a,+ Z aka16k+l,n (n #0)
k40 k,I£0
and the out-field mode expansion is obtained by the replacements
P =P, Gn = by

The equality between L,,'s of the in and out-fields leads to the equations

. OF . . . oF
[nl(in] + ip) - = 20| — ipa—n — i D [e(k) — e(D)] 1l ans—gsiin
an raZo da_;

k||l OF ap)
k+l+n

+k§0[6(/€)+6(l)] (akal+ 4 Da; da
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Solutions for the generating function

Equation for n =0

Z k akaak

k0

A monomial ay, ---ay, is a solution of this linear equation if
ny+---+mn, =0.

The function F' then is represented in the form

F=FO4Y"FW  with FW = >" f)  (p)bnysein, an, -

v>2 ni...Ny

where the expansion coefficients f,SZ)nD are symmetric under the
permutation of the indices.

.an
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Solutions for the generating function

@ _ 4@ :i(!n!—ip>
Iz = o = G

. 4ip €(n1) €(n2) €(n3)
ningng 3 (|n1’—|-ip)(|n2‘+ip)(‘n3|+ip)

2p
4
fT(Ll)n2n3n4 - H <|na’ —|—2p> Un1n2,n3

ip ip ip
In1+mne|+ip  |na+nsl+ip |ng+ni| +ip

Unl nong — (1 -
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Solutions for the generating function

Starting from v = 4, the following recursive relations hold

(v+1)
il + i) 25— =

)

> ([e<k>+e<>1 o i[e(k)—e(l)]ak> 15

k10 -

k l oFU) gpw+2-j)
(k) + (Zﬁak - )]5kz+l+n

v @) () ),
fnl...ny l/! pg ’n]’—i-lp ni..My—1 9
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Particle model

Classical equation
G(7) + 4p2 ) =0
General solution )
e P(T) — gma—pT | /LQ ed Pt
Canonical transformation

Pout = —Pin = —P Gout = —q + 2 10%(1?/#)
Generating function

—(Gin + Gout)op = OF (p) F(p) = —2p[log(p/p) — 1]

The reflection amplitude

R(p) = e losh/m) Llp/h) o1 F(p)

T(ip/h) "¢ s
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Quantization
Canonical quantization [p(2), ' (y)] = =L 6(2 —y)
The Hilbert space L?(R,) ® F
F is the Fock space
The vacuum state  [p;0) (p > 0)
Normal ordered operators
T(z) = ¢/2(=) s —no(z) €200 = 200

The condition
/
[T(z), 2¢®)] = <62¢(y)) 5(z —y) — XW (z —y)

defines n=1+h (h=1?)
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Quantum Virasoro generators

quantum Virasoro generators are defined as follows

Lin = (p+ imm)am + Y 4Gy 0jpjrm +2 . ab amy;

3:3'>1 >0
Ly 4: (P> +n*) +2 :g:: a;
7>1
L,m:(p—zmn + Z&j&; 5j+]m—|—22an+]aj
J,3'>1 Jj=1
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Vertex operators and the reflection amplitude

Conformal properties and locality fixes the vertex operator

V(r,o) = e ¥in(1:0) 4 ug : e~ #in(70) A(2)A(7) :

S-matrix )
e #in(m0) g — u% S e~ #in(70) A(2)A(2)

The vacuum sector
S1p;0) = R(p) | — p; 0)

Equation for R(p)

(3 T'(—ip — b?) T'(ip)

Atipt 8T —ip) TP~ it?)

R(p) = T

Solution
_y T (ip/t) T(p)
I'(—ip/b?) T'(—ip)

R(p) = — (1 T*(v))

— 28/33



The structure of S-matrix

S-matrix

S =P R(p) Sp(an) Sp(an)
P is the parity operator
PpP=-p PqP=—q
S, does not depend on ¢
Sp [p; 0) = |p; 0)

The conformal symmetry
[5,T(2)] =0

provides the operator relations

San(p) = Ln<_p) Sp
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Equation for the S-matrix

Projecting the operator equations between the coherent states
(@*| 8 Lu(p) Ip, a) = (a*| Ln(—p) S |p, a)
Representing S in the form
S=R(p)e i"
one finds that R(p) is canceled in the equations and F} satisfies

n| OF,
> (Inln+ Zp) = i(|nln — ip)a_n — 5 Z Nlar g, Okstn
kl;é() -

1 k||l ( OF, OF, O°F,
+2k§0[6(k)+6(l)] [“’““” 4 \daroas T Maa g )| Ok
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Transition amplitudes

(¢,2) 1+h_2p

S =
fas —dipll + ) =14
ST A hr )1+ 2h+ )@+ htip) | 2L
fan —4p(1 + h)

UL 31+ h+ip)2(1 + 2k + ip) (2 + h + ip)

a2 _ i(2 4 Th + Th? + 2h3) — (3 + 5h + 3h%)p — p3
227 (1 +h+ip)(1 42k +ip)(2 + h+ip)

f(qvﬁ) _
—-1-1-1111
32p(1+ h)(1 + A — ip)

15(1 4+ h+ip)3(1 4+ 2h +ip)(1 + 3h +ip)(2 + A+ ip)(3 + h + ip)
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Scattering and bound states

. . 2
The conformal group orbit for a constant negative stress tensor T' = —%

o) = 5 1 Dhos('(2)

The mode expansion
1 .
¢'(2) = gp +) ape
n#0

Canonical commutation relations

[ama an] =hm 5m+n,0

However,
ain # ap al, = by
The Fock space with the vacuum state |6y, 0)
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Summary and outlook

We have derived equations for the generating function of the canonical
transformation between the in and out fields of Liouville theory in the
holomorphic variables.

We have calculated semi-classical S-matrix in a compact form.

We have derived equations for the normal symbol of S-matrix.

A closed form of the amplitudes have been found for scattering of Liouville
particles (up to 8).

e Boundary Liouville theory and bound states.

e High-dimensional Liouville theory

e String in the static gauge
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