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Plan of the talk

e Euclidean approach to metastable vacuum decay
e Creation of wormholes in tunneling transitions with gravity
e Negative mode problem in tunnelling transitions with gravity

e Concluding remarks
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Instantons and tunnelling
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Figure 1: Tunneling in symmetric double well potential.
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Bounces and false vacuum decay

Figure 2: Tunneling in asymmetric double well potential.

4 /54



Euclidean approach to tunneling

In the semiclassicall approximation, summing multibounce configuration one finds correction to ground

state energy Fg = hw /2 in the following form
E = Ey— hKe /"1 4+ O(R)] 2)

where, S = [ dn[%(g—i)Q + V()] is the Euclidean action on the bounce solution Z(7) and
pre-exponential factor K is given by (Gaussian) integration of the exponential of quadratic action of linear

perturbations S(2) = 5 [ dnox[—82 + V"o,

B 1(i)1/2 det'[-0; + V" (z)]
- 2°'2rh det|—03 + w?]

)—1/2 . (3)

There is exactly one tunnelling negative mode in the spectrum of linear perturbations about the bounce
solution, since (translational) zero energy wave function 1y ~ g—i of corresponding Schrodinger equation

has a node. i.e. K = 1I.
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Finally, the decay probability per unit time of the unstable state is given by

I' = —2ImE/h (4)
5 g det'[-05 + V" (z)] ~1/2 _—S/h
= (G det[—0? + w?] e

In the 1988 NPB article “Quantum Tunneling And Negative Eigenvalues,” Coleman arrives to strong
conclusion: “There may exist solutions in other ways like bounces and which have more than one negative

eigenvalue, but, even if they do exist, they have nothing to do with tunnelling.”

These quantum mechanical results could be generalized for
e Field theory in flat space-time

e Field theory with gravity
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Special classical solutions in Euclidean quantum gravity
Hawking and Moss (1982)

1. The Hawking-Moss solution is a 4-sphere corresponding to scalar field sitting on the top of the potential

barrier
¢(77) — ¢top7 :0(77) — Ht_o;) Sin(Htopn) 3 ()

with Hiop = \/mV(qbtop)/S. Note that the Euclidean time 7 varies in finite interval n = (0, 75 ).
Coleman and De Luccia (1980)
2. The Coleman-De Luccia bounce is a deformed 4-sphere. It starts with some ¢ = ¢ at 7 = 0 close to

@_, stops at 7 = 75 close to ¢4 and obeys the regularity conditions

p(0) = $(0) =0, p(ns) = ¢(ng) =0. (6)

Bousso and Linde (1998), Balek and Demetrian (2004)
Hackworth and Weinberg (2005)
B.-H. Lee, C. H. Lee, W. Lee and C. Oh (2010, 2012)
3. Oscillating bounces and instantons, solutions in which the scalar field passes over the barrier more
then once.
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Figure 3: CDL bounce and oscillating bounce solution with N=7 nodes of ¢, (a =n,a4 = p) :
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dS — dS tunneling: Four Bounces

1. Big - Small 3. Small - Small

2. Small - Big 4. Big - Big

Figure 4: Four apriori possible instantons in dS to dS transitions.
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Scalar field with minimal coupling and NEC violation

We will start with a simple model of a scalar field ¢ with a potential V(qb) minimally coupled to gravity and
described by the action

S = [daay=g(5 R~ 3V.69 0~ V(@) o

where k is the reduced Newton’s constant. We will consider homogeneous and isotropic universes,
described by the metric

- 72
ds* = —dt* + a*(t)yf dx'dr? = —dt* + a2(t)[1 —TKTQ

2302 | 2 2 2
; + r“df* 4+ r°sin”(0)dp”]. (8)

In what follows we will only be interested in the /X' = +1 case, but for clarity we will write /< out explicitly

in this section. The energy momentum tensor is given by

Too =ps, 1ij= CLZ%IJ{ Ps (9)
where the energy density and the pressure are given respectively by
1 (do\” 1 (do\”
s — o \ 7. vV ) s — 3\ 7, - V. 10
Ps =3 (dt) i Ps =35 (dt) 10)
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The null energy condition (NEC),
T,ntn” >0, (11)

with n, being a null vector, n,n* = 0, then reduces to the requirement

ps +ps >0, (12)

The equations of motion (Friedmann equations) can be written in the form

K K
H? = Zp,——, 13
dH K K
I — —"§(Ps-Flk)'+'g§ ; (14)

where H = (da/dt)/a. Tunnelling can be described by performing an analytic continuation to Euclidean

time, witht = —i\. Then the metric and scalar field are of the form

ds% = d)\* + p?dQs , ¢

d(N) (15)

where p(A\) = a(it).
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Note that the Euclidean version of the NEC condition Eq. (12) reverses sign:
E E
ps +ps <0,

with

2 Ldh 9

The Euclidean versions of the Friedmann equations read

dA

2 2
pSE—l(@) -V, ple(@> +V.

H2 . _ E il
E Ps + a )
dj\ T 2(p8 —|_p8) CL2 y
where Hg = (dp/d)\)/p.

(16)

(17)

(18)

(19)

At the putative neck of an instanton, i.e. at a local minimum of p(), we have H = 0 and would need

dHE
dX

> (), which, in view of Eq. (19), is impossible if the “NEC” condition Eq. (16) is fulfilled.

Thus we can see that (O(4)— symmetric) instantons in theories whose Lorentzian counterpart satisfies

the NEC cannot have a neck.
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Scalar field with non-minimal coupling to gravity

We will be interested in the modified gravity theory defined by the Euclidean action

S / e /g (—if«b)R + VL0V + V(¢>) S (s g) s (20)

where the matter action .S,,, depends on matter fields 1/,,,, which we assume to couple to the physical
metric g, f(¢) =1 — kE@? and ¢ is dimensionless parameter.

Assuming O(4)—symmetry, ds®> = N%(n)dn? + p(n)*dQ3, ¢ = ¢(n) , in proper time gauge,
N = 1, the equations of motion can be written in a form convenient for numerical integration:

.. AV . dV

+320 — TP AV — 660 T + (1= 607 = 1)
R 3o L RE(1+ 600
i 1 G e oLl e e

3¢(1 — kEQ?) (ﬁdV)
— rE(1 = 6§)¢* " dp/

where = d/dn and k = ﬁ is the "effective gravitational constant”.

+665 96 — (22)
0
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We will now assume that the potential V' (¢) is positive and has two non-degenerate local minima at
¢ = ¢ty and ¢ = Py, With V (g, ) > V(v ), as well as a local maximum for some ¢ = ¢op, With
Oy < gbtop < @tv. The Euclidean solution describing vacuum decay satisfies the boundary conditions

6(0) =¢o, ¢(0)=0, p0)=0, p0)=1, (23)

atn = 0 and

¢(77maa:> — Qbma é(nma:c) — 07 p(nmaaz) — 07 p(”mam) =1 ) (24)

at some 17 = Nnaz- This assumes the following Taylor series at 7 — 0

B (1 — kEPF) G5 lo=ao + 4KEd0V (o)

o=t TR wed - 60))

KV (¢0) — 5KEG0 GG lo=g0
18(1 — K€ (1 — 68))

and similar power law behaviour as ©* — 0, where * = 100 — 1

n° +O0(n?), (25)

p(n) = n-— +0(n°), (26)
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Numerical results

For our numerical examples, we will consider the potential double well potential parameterized as follows:
Vi) =A+ §M¢ + 563¢ + Z@@ + Ae . (27)
We have chosen the following values for the constants appearing in Sg,
k=01,¢=3,A=01, u=10, 83=-025, 54,=01, A=3.0, a=20. (28)

When |¢| is too large, the effective gravitational constant &
K
1 — Kk€P?

becomes negative, and a region of “anti-gravity” is reached. In what follows, we will solely be concerned

R (29)

with the regions of ordinary-sign gravity.
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Figure 5: The scalar field potential V' (¢) in Jordan frame (left) and the corresponding potential V' (¢) in

Einstein frame (right).

When \(b\ is too large, the effective gravitational constant £ becomes negative, and a region of
“anti-gravity” is reached. These regions are shaded in the plot of V(¢) — in our discussion, we will solely
be concerned with the regions of ordinary-sign gravity.
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Figure 6: The field profiles (scale factor on the left, scalar field on the right) for our example of an instanton
with a neck (A = 7).
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1.0

Figure 7: The field profiles (scale factor on the left, scalar field on the right) for our oscillating instanton

example. The scalar field profile now leads to a hump in the scale factor, rather than a neck
(A=n).
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Bubble materialization

In order to obtain the bubble shape at the moment of materialisation, we have to analytically continue the

Euclidean metric

ds® = dn* + p*(n) [dy* + sin® (¥)(d6” + sin” Odp?)] (30)
into Lorentzian signature. This procedure is not single valued. Using analytic continuation
¢:g+it, n=r, (31)
we obtain the bubble geometry
ds® = —p*(r)dt® + dr® + p*(t,r)dQ3 (32)
where
p(t,r) = cosh(t)p(r) . (33)

We see that the function p indeed determines the spatial geometry of the bubble at the moment of

materialisation, ¢ = 0, and thus the neck region becomes a wormhole.
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Negative mode problem

The Euclidean action of system composed of scalar field minimally coupled to gravity is
4 1 1
S= [ d2y/g| -5 R+ 5VupVio +V(9)| (34)
where Kk = 87 is the reduced Newton’s constant. For the O(4)—symmetric metric ansatz we will use
ds® = dn* + p*(n)dQ3 = a*(7)(dT? + dQ3) , (35)

where 7 is (Euclidean) proper time, 7- conformal time, p(7) is the scale factor' = d/dn,’ = d/dr, and
d€)3 is metric of unit three-sphere,

dQ¥s = dx? + sin®y (d6? + sin?(0)dy?) . (36)

We assume that potential V' (¢) has characteristic asymmetric double-well shape with local minimum at

some ¢ = ¢_, local maximum ¢, and global minimum ¢ .
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We expand the metric and the scalar field over a O(4)—symmetric background
ds® = a(7)? [(1 +2A(7))dm* + 75(1 — 2\1!(7))da:id:1;j},
¢ = (1) + (1), (37)

where T is the conformal time, a and ¢ are the background field values and A, ¥ and ® are small

perturbations. Here 75 is the three-dimensional metric on a constant curvature section and as usual
K ==1,0.

Under the infinitesimal shift 7 — 7 4+ A the gauge transformations are
U =—H\N, 6P=¢)\N, A=N+HN, (38)

where H = a'/a.
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Expanding the total action to second order in perturbations and using the background equations of motion,

we find

S =59, o+ SPA W 9], (39)

where S(9) is the action of the background solution and S(2) [A, v, <I>] is the quadratic action for scalar

O(4)—symmetric perturbations given by the Lagrangian:

1 52
L= —a?\ /7 [-602 4+ 6KT? + k(D2 + a? Y 52 4 60/ U’ D)
2K dpdp
— (2K ®" — 2/@@2(2—‘/@ + 12HY + 12K0)A — 2(H' +2H* + K)A?| .
©

Note that the variation with respect to A gives the first order (constraint) equation

oV
2k & — 2na25—q> + 12HU + 12K0 +4(H +2H* + K)A=0.
¥
To obtain unconstrained (physical) degree of freedom one should impose gauge condition and solve

constraints.
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The | approach (Lagrangian):
Fixing the gauge with the condition ¥ = (0 and eliminating A with the help of the constraint equation we

obtain the unconstrained quadratic action in the form

g(2) _/ vl [HZcp/z K oV o

LT | 2Qrrr | o2 3 0
ka® 0V ., 6%V
®2| drd’® 40
(6 (590) +QLRT5¢5¢) ] Td’x, (40)
with
, k' Ka?
QrLrr = H i :IC_—S V. (41)
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The Il approach (Hamiltonian):
Fixing the gauge by ® = 0 and eliminating 11 (matter degrees of freedom), after some canonical

transformation one gets the quadratic part of the Euclidean action (/C is the curvature parameter):

1 —4K d
9(2) — ( )/[( q) —|—Uq}fd3:1:d7 (42)
2 dt
with a potential U depending on the background fields
1
U — ggpfﬁgp'(a)"“—m. (43)

We see that quadratic action for the homogeneous harmonic has “wrong” overall sign. To overcome this
problem it was suggested that analytic continuation ¢ — —iq is performed while integrating over this

mode.
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The Il approach (Hamiltonian):
Fixing the gauge by A = 0 , Iy = 0 one obtains unconstrained quadratic action for one physical

dynamical degree of freedom as

2
2 _ 3,9V gz K 20V g
S /dex 20 [ SIC(CL 5o 30" H)D'
— — — o 44
—|—(6K(a 5 3'H)* +Q (a 5080 T2 , (44)
with
K
=1——=¢ 4
Q e ¥ (45)

Assuming () > 0 along the bounce and introducing a new variable ¢ = a/\/Q ®, after integration by

parts we obtain

52 = %/ (¢° + Wla(r), o(7)]¢*) dry/yd’x . (46)
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Khvedelidze, G.L. and Tanaka (2000)
G.L. (2000)
Gratton and Turok (2001)

Corresponding Schrodinger equation

———q+ Wla(r),(7)]lqg = Eq, (47)

was shown to have one boundstate, i.e the Coleman-De Luccia bounce has exactly one negative mode.
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Note that by definition at the local maximum, ¢, the second derivative of potential is negative,
V//((ptop) < O.

For —4 < % < (0 CDL bounce does not exists and HM has one negative modes.
top
For % < —4 CDL comes to existence and has one negative mode, whereas HM gets extra

top
negative modes.
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Number of negative modes of the oscillating bounces

Oscillating bounces were discused intensively by , with the aim to give

them physical interpretation.

Introducing new variable f = \/5q and passing to the proper time o, quadratic action of KLT can be

written in the form
1 . 1
sy = 2n° / (52 + 5Ula(0), ()] £2)do . (48)

So, spectrum of small perturbations about oscillating bounce solution is determined by the following

Schrodinger equation
d2
—Wf+U[a(a),gp(a)]f:Ef, (49)

and the number of negative modes of the oscillating bounce solution is the number of bound states of

these Schrodinger equation.
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Potential U is given by
1 6%V

Ula(). 2(0)] = & 55

where Q = 1 — ka?p? /6.

106> 12a° 8 6

N Ka? (5V)2 _ 2kaap oV
2Q% "oy Q% oy
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Numerical results

Let’s parameterize the general quartic scalar field potential as follows:

A
V=V0+H2(—é902—g903+ — %), (51)
2 3 4
with H% = kVp/3.
Passing to the dimensionless variables
Vo = H?
cﬁ:f,&:av,(f ov,Vy = Z,H2:—2,/’%:/<w2, (52)
v v v

with v2 = 26/)\ we will get the dimensionless equations of motion with the rescaled potential

L 1 o §.4 1.
V=Vo+H2B(—§¢2—%¢ + 2904) (53)

where g = gv /3. In what follows we will use dimensionless variables and omit tildes.
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Potential U in the Schrédinger equation Eq. (49) close to the o = 0 behaves as

3 2
U:@JrUOJrO(a), (54)

where constant Uy depends on the initial value of scalar field and parameters of the background solution

potential V. The regular branch of the wave function f behaves as
1
f=0%2(1+ 2 (Uo — E)o? 4+ 0(ch)) . (55)

Convenient way to determine the number of bound states of Schrodinger equation in a given potential is
the investigation of the zero energy wave function. The number of nodes of zero energy wave function

exactly counts the number of negative energy states (see e.qg. ).
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Let’s describe our results in details on concrete example. For the parameters choice

1
k=000l .Vo=01,8=7003.9=——. 56

the potential V' has local maximum at ¢, = 0, metastable minimum at pr, = —0.6242212930 and
true vacuum at i, = 0.8009979884. There exists CDL bounce solution in this potential, oscillating
bounces on top of it with up to /N = 7 nodes and, as always, the HM solution with ¢ = ©t,p. Numerical
investigation supports quite intuitive and expected result: the bounce with /N nodes has exactly N
negative modes. Typical results are demonstrated for N = 3 case on Fig.8 and Fig.9. The zero energy
wave function of Schroedinger equation Eqg. (49) has in this case three nodes, which means that there are
exactly three negative energy states for N = 3 oscillating bounce. We also found this states explicitly and
determined their energies: Fy = —0.0013787, E7; = —0.0004362 and £y = —0.0001207.
Corresponding HM solution has 8 homogeneous negative modes, which is consistent with chosen value of

B.
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Figure 8: Oscillating bounce solution with three nodes of ©.
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Figure 9: Zero energy wave function f of Schrédinger equation of linear perturbations about oscillating

bounce solution with three nodes of .
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Number of negative modes of the oscillating instantons

Oscillating instantons were studied intensively by Korean group

Analysis of spectrum of small perturbations about these oscillating instantons shows the same pattern:

instanton solution with /V nodes had exactly N homogeneous negative modes.
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Figure 10: In the left panel, profile of the scalar field for the N = 1 oscillating instanton. In the central panel,
potential for O(4)—symmetric perturbations. In the right panel, zero mode wavefunction (dotted
line) and negative mode (solid line): the normalization of the wavefunctions is not imposed, so

the overall scale of the vertical axis is irrelevant.
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Qatop

Figure 11: In the left panel, profile of the scalar field for the N = 2 oscillating instanton. In the central panel,
potential for O(4)—symmetric perturbations. In the right panel, zero mode wavefunction (dotted
line) and negative modes (solid lines): the normalization of the wavefunctions is not imposed, so

the overall scale of the vertical axis is irrelevant.
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Qatop /\

Figure 12: In the left panel, profile of the scalar field for the N = 3 oscillating instanton. In the central panel,
potential for O(4)—symmetric perturbations. In the right panel, zero mode wavefunction (dotted
line) and negative modes (solid lines): the normalization of the wavefunctions is not imposed, so

the overall scale of the vertical axis is irrelevant. For N = 4, 5, 6 we found analogous results.
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Recent developments

Working in Lagrangian approach with gauge invariant variable

X = pP — ppV¥ (57)

and numerically solving with Mathematica pulsation equation for concrete potentials Lee and Weinberg

arrived to conclusion that type A bounces have tunneling negative mode whereas type B bounces don't!

- P _—

i . Y
-F # ; .
P i g "
d
| - 3
- _—— e ——————
# o -
, £ J-_,.r"
¥ . B 3 . E Il i E [ SR T T—Y p— i ey 'E
. r 3 ] i % K

Figure 13: Type A bounces (left panel) and type B (right panel).
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Using KLT ( ) approach,i.e. fixing the gauge by A = 0 ,IIy = 0 one

obtains unconstrained quadratic action for one physical dynamical degree of freedom for IC = +1 as

(2] — 92 [ 3 Y 2
5918] = 2° [ o 559% + SULe(). o9 (58)
where the factor () was given by
2 :2
Q=1-=", (59)

and the potential U is expressed in terms of the bounce solution as

V')  2Kp? K
Q @ T3

The exact form of the fluctuation operator depends on the choice of a weight function, which can be

Ule(n). p(n)] = (65%0% +p*V"(2) = 5pppV'()) . (60

specified by defining a norm.
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With the natural choice of the norm

D) = /d4x Vg % = 27T2/d77 p(n)® &2 . (61)
The fluctuation equation diagonalizing the quadratic action Eq. (58) then has the form
1 d2® Q 3p )\ dP
e +UD =)D, (62)
Q dn? <Q2 pQ) dn

with the potential U given in Eq. (60). Note that the function () — 1 at the ends of the interval [0, 7;42),

but for some bounces it can become negative for some interval of 7.
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QOur main results:

1. If Q > 0, one finds exactly one tunnelling negative mode for all bounces

2. If () becomes negative in some interval

a). Solution of pulsation equation and first derivative is regular across () = 0 points.

b). The one "tunneling” negative mode continues to exist, but on top of it an infinite tower of additional
negative modes arise with support in () < O region.
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Examples of negative Q with parameters far from Planck scale

Take the potential

A €
V(g) =V + g(ng — 1) + ﬂ(sﬂu)

Choose parameters

Then the potential is given in Figure 14 which has V(gbtop) five orders of magnitude below the Planck

scale.

Vo=10"*21=10""e=10"" n =04
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Figure 14: The potential.
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The CdL bounce and the corresponding factor Q is shown in Figure 15. Clearly Q is negative while the

potential is far from Planck.

150 1.07 -
: 050
10[ I
LN e e
0.5 - 5.0x10791.0x10" 1.5x10"R.0k 1011 2.5x 10" 3.0x 101 3.5x 10"
05
5.0x10101.0x10"11.5x 107" Z0x 1011 2.5x 1011 3.0x 101" 3.5x 107"
I -1.00
-050 .

Figure 15: Left: Scale factor a(t)/10! in blue and scalar field ¢(¢) in orange.
Right: Corresponding factor Q
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Figure 16: The four dimensional Ricci scalar close at the maximal radius of the bounce solution in fig 15
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Higgs like potential

Taking into account current experimental values of the standard model parameters the instability scale of
the Higgs potential, A(up) = 0, is

ta = 9.92-10°Gev (65)

It depends sensitively on the top and Higgs masses and at 10 the range is
1.16 - 109Gev < pp < 2.37-2.37 - 101t Gev. The top of the potential barrier lies at

Gtop = 4.64 - 1019Gew (66)

and the barrier height is

Viep = 3.46 - 10°%Gev® = (4.31 - 10°Gev)* (67)
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Higgs potential can be modelled as

A
Vi = Vi + H4(¢) ¢ (68)
_ ¢ a g D
A =q |(In Mpl) (In MPZ) (69)

where ¢ is fitting parameter, A is instability scale and M p; = V87 G ~ 2.435 - 10'3Gev. Numerically
we found that for A < A, Q is everywhere positive and for A > A, Q develops region with () < 0.
Choosing parameters ¢ = 10~ and V;, = 1072 we found 0.57 < A, < 0.6 in M p; = 1 units, see

Figure 17. So, for realistic Higgs like potential negative mode problem shows up only at the Planck values
of the instability scale.
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Figure 17: Here we show the values of the scalar field ¢, scale factor p and the function () for the Higgs
like potential Eq. (68). The top figure shows the CdL instanton for A = 0.57 while the bottom
one has A = 0.6. The images on the left are zoomed in versions of the full instantons shown

on the right. M p; = 1 units are used.
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Historical Summary of the negative mode problem

Year / Authors

Tunneling negative mode

Additional negative modes

1985, G.L., Rubakov Tinyakov Not discussed

Infinitely many

1992, Tanaka, Sasaki

None

None

2000, Khvedelidze, G.L., Tanaka | One

Not discussed (only () > 0 case)

2000, Gratton, Turok

One

Not discussed (only () > 0 case)

2006, G.L. N for the N-th oscillating bounce | Not discussed (only () > 0 case)
2014, Lee, Weinberg One / None Infinitely many
2015, Koehn, G.L., Lehners One Infinitely many in () < O case

Tab 1. Conclusion about the number of negative modes reached in different investigations.
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Concluding remarks

|. We have shown that instantons with necks can be produced as a result of quantum tunnelling in the
decay of a metastable vacuum in scalar field theories with non-minimal coupling to gravity (while they
cannot be produced in the case of minimal coupling).

Challenge I:

- Spectrum of linear perturbations (number of negative modes)

- Lorentzian evolution of the bubble after materialization and global structure of space-time
- Existence of wormhole solutions in other NEC violating theories

Il. It was found that with the proper reduction scheme CdL bounce has exactly one negative mode for
() > 0 backgrounds. The oscillating instantons and bounces with /N nodes have exactly N homogeneous
negative modes in their spectrum of linear perturbations. Existence of more than one negative modes

makes obscure the relation of these oscillating bounce solutions to the false vacuum decay processes.

Challenge II:
- How to interpret an infinite tower of additional negative modes for () < 0 cases: Their existence and

significance remain mysterious even after 34 years.
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Thank you for attention!
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