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Plan of the talk

• Euclidean approach to metastable vacuum decay

• Creation of wormholes in tunneling transitions with gravity

• Negative mode problem in tunnelling transitions with gravity

• Concluding remarks
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Instantons and tunnelling

Figure 1: Tunneling in symmetric double well potential.

∆E ∝ e−SE [xinstanton] (1)
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Bounces and false vacuum decay

Coleman (1977)

x x

V −V

Figure 2: Tunneling in asymmetric double well potential.
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Euclidean approach to tunneling

Coleman (1977)

In the semiclassicall approximation, summing multibounce configuration one finds correction to ground

state energy E0 = ~ω/2 in the following form

E = E0 − ~Ke−S/~[1 +O(~)] , (2)

where, S =
∫
dη[ 12 (

dx
dη )

2 + V (x)] is the Euclidean action on the bounce solution x̄(η) and

pre-exponential factor K is given by (Gaussian) integration of the exponential of quadratic action of linear

perturbations S(2) = 1
2

∫
dηδx[−∂2η + V ′′]δx,

K =
1

2
(
S

2π~
)1/2(

det′[−∂2η + V ′′(x̄)]

det[−∂2η + ω2]
)−1/2 . (3)

There is exactly one tunnelling negative mode in the spectrum of linear perturbations about the bounce

solution, since (translational) zero energy wave function ψ0 ∼ dx̄
dη of corresponding Schrödinger equation

has a node. i.e. K = iΓ.
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Finally, the decay probability per unit time of the unstable state is given by

Γ = −2ImE/~ (4)

= (
S

2π~
)1/2|det

′[−∂2λ + V ′′(x̄)]

det[−∂2λ + ω2]
|−1/2 e−S/~ [1 +O(~)] .

In the 1988 NPB article “Quantum Tunneling And Negative Eigenvalues,” Coleman arrives to strong

conclusion: “There may exist solutions in other ways like bounces and which have more than one negative

eigenvalue, but, even if they do exist, they have nothing to do with tunnelling.”

These quantum mechanical results could be generalized for

• Field theory in flat space-time Coleman, Callan and Coleman (1977)

• Field theory with gravity Coleman and De Luccia (1980)
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Special classical solutions in Euclidean quantum gravity

Hawking and Moss (1982)

1. The Hawking-Moss solution is a 4-sphere corresponding to scalar field sitting on the top of the potential

barrier

ϕ(η) = ϕtop, ρ(η) = H−1
top sin(Htopη) , (5)

with Htop =
√
κV (ϕtop)/3. Note that the Euclidean time η varies in finite interval η = (0, ηf ).

Coleman and De Luccia (1980)

2. The Coleman-De Luccia bounce is a deformed 4-sphere. It starts with some ϕ = ϕ0 at η = 0 close to

ϕ−, stops at η = ηf close to ϕ+ and obeys the regularity conditions

ρ(0) = ϕ̇(0) = 0, ρ(ηf ) = ϕ̇(ηf ) = 0 . (6)

Bousso and Linde (1998), Balek and Demetrian (2004)

Hackworth and Weinberg (2005)

B.-H. Lee, C. H. Lee, W. Lee and C. Oh (2010, 2012)

3. Oscillating bounces and instantons, solutions in which the scalar field passes over the barrier more

then once.

7 / 54



a a

φ

σ σ

φ

Figure 3: CDL bounce and oscillating bounce solution with N=7 nodes of ϕ, (σ ≡ η, a ≡ ρ) .
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dS → dS tunneling: Four Bounces

1. Big - Small 3. Small - Small

2. Small - Big 4. Big - Big

F F

F F

T T

T T

Figure 4: Four apriori possible instantons in dS to dS transitions.
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Scalar field with minimal coupling and NEC violation

We will start with a simple model of a scalar field ϕ with a potential V (ϕ) minimally coupled to gravity and

described by the action

S =

∫
d4x

√
−g
( 1

2κ
R− 1

2
∇µϕ∇µϕ− V (ϕ)

)
, (7)

where κ is the reduced Newton’s constant. We will consider homogeneous and isotropic universes,

described by the metric

ds2 = −dt2 + a2(t)γKij dx
idxj = −dt2 + a2(t)[

dr2

1−Kr2
+ r2dθ2 + r2 sin2(θ)dφ2]. (8)

In what follows we will only be interested in the K = +1 case, but for clarity we will write K out explicitly

in this section. The energy momentum tensor is given by

T00 = ρs , Tij = a2γKij ps (9)

where the energy density and the pressure are given respectively by

ρs =
1

2

(
dϕ

dt

)2

+ V , ps =
1

2

(
dϕ

dt

)2

− V . (10)

10 / 54



The null energy condition (NEC),

Tµνn
µnν > 0 , (11)

with nµ being a null vector, nµn
µ = 0, then reduces to the requirement

ρs + ps > 0 . (12)

The equations of motion (Friedmann equations) can be written in the form

H2 =
κ

3
ρs −

K

a2
, (13)

dH

dt
= −κ

2
(ρs + ps) +

K

a2
, (14)

where H ≡ (da/dt)/a. Tunnelling can be described by performing an analytic continuation to Euclidean

time, with t = −iλ̄. Then the metric and scalar field are of the form

ds̄2E = dλ̄2 + ρ̄2dΩ2
3 , ϕ̄ = ϕ̄(λ̄) , (15)

where ρ̄(λ̄) ≡ a(it).
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Note that the Euclidean version of the NEC condition Eq. (12) reverses sign:

ρEs + pEs < 0 , (16)

with

ρEs =
1

2

(
dϕ

dλ̄

)2

− V , pEs =
1

2

(
dϕ

dλ̄

)2

+ V . (17)

The Euclidean versions of the Friedmann equations read

H2
E = −κ

3
ρEs +

K

a2
, (18)

dHE

dλ̄
=

κ

2
(ρEs + pEs )−

K

a2
, (19)

where HE = (dρ̄/dλ̄)/ρ̄.

At the putative neck of an instanton, i.e. at a local minimum of ρ̄(λ̄), we have HE = 0 and would need
dHE

dλ̄
> 0, which, in view of Eq. (19), is impossible if the “NEC” condition Eq. (16) is fulfilled.

Thus we can see that (O(4)− symmetric) instantons in theories whose Lorentzian counterpart satisfies

the NEC cannot have a neck.
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Scalar field with non-minimal coupling to gravity

We will be interested in the modified gravity theory defined by the Euclidean action

SE =

∫
d4x

√
g

(
− 1

2κ
f(ϕ)R+

1

2
∇µϕ∇µϕ+ V (ϕ)

)
+ Sm(ψm, gµν) , (20)

where the matter action Sm depends on matter fields ψm, which we assume to couple to the physical

metric gµν , f(ϕ) = 1− κξϕ2 and ξ is dimensionless parameter.

Assuming O(4)−symmetry, ds2 = N2(η)dη2 + ρ(η)2dΩ2
3, ϕ = ϕ(η) , in proper time gauge,

N ≡ 1, the equations of motion can be written in a form convenient for numerical integration:

ϕ̈+ 3
ρ̇

ρ
ϕ̇− κξϕ

1− κξ(1− 6ξ)ϕ2
[4V − 6ξϕ

dV

dϕ
+ (1− 6ξ)ϕ̇2] =

dV

dϕ
. (21)

ρ̈ = − κ̃ρ
3

(
(1− 3ξ

1− κξ(1− 6ξ)ϕ2
)ϕ̇2 +

1− κξ(1 + 6ξ)ϕ2

1− κξ(1− 6ξ)ϕ2
V

+6ξ
ρ̇

ρ
ϕϕ̇− 3ξ(1− κξϕ2)

1− κξ(1− 6ξ)ϕ2
ϕ
dV

dϕ

)
, (22)

where ˙≡ d/dη and κ̃ ≡ κ
1−κξϕ2 is the ”effective gravitational constant”.
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We will now assume that the potential V (ϕ) is positive and has two non-degenerate local minima at

ϕ = ϕtv and ϕ = ϕfv, with V (ϕfv) > V (ϕtv), as well as a local maximum for some ϕ = ϕtop, with

ϕfv < ϕtop < ϕtv. The Euclidean solution describing vacuum decay satisfies the boundary conditions

ϕ(0) = ϕ0, ϕ̇(0) = 0, ρ(0) = 0, ρ̇(0) = 1 , (23)

at η = 0 and

ϕ(ηmax) = ϕm, ϕ̇(ηmax) = 0, ρ(ηmax) = 0, ρ̇(ηmax) = 1 , (24)

at some η = ηmax. This assumes the following Taylor series at η → 0

ϕ(η) = ϕ0 +
(1− κξϕ20)

∂V
∂ϕ |ϕ=ϕ0 + 4κξϕ0V (ϕ0)

8(1− κξϕ20(1− 6ξ))
η2 +O(η4) , (25)

ρ(η) = η −
κV (ϕ0)− 3

2κξϕ0
∂V
∂ϕ |ϕ=ϕ0

18(1− κξϕ20(1− 6ξ))
η3 +O(η5) , (26)

and similar power law behaviour as x→ 0, where x = ηmax − η.
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Numerical results

For our numerical examples, we will consider the potential double well potential parameterized as follows:

V (ϕ) = Λ +
1

2
µϕ2 +

1

3
β3ϕ

3 +
1

4
β4ϕ

4 +Ae−αϕ2

. (27)

We have chosen the following values for the constants appearing in SE ,

κ = 0.1 , ξ = 3 , Λ = 0.1 , µ = 1.0 , β3 = −0.25 , β4 = 0.1 , A = 3.0 , α = 2.0 . (28)

When |ϕ| is too large, the effective gravitational constant κ̃

κ̃ ≡ κ

1− κξϕ2
, (29)

becomes negative, and a region of “anti-gravity” is reached. In what follows, we will solely be concerned

with the regions of ordinary-sign gravity.
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Figure 5: The scalar field potential V (ϕ) in Jordan frame (left) and the corresponding potential V̄ (ϕ̄) in

Einstein frame (right).

When |ϕ| is too large, the effective gravitational constant κ̃ becomes negative, and a region of

“anti-gravity” is reached. These regions are shaded in the plot of V (ϕ) – in our discussion, we will solely

be concerned with the regions of ordinary-sign gravity.
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Figure 6: The field profiles (scale factor on the left, scalar field on the right) for our example of an instanton

with a neck (λ ≡ η).
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Figure 7: The field profiles (scale factor on the left, scalar field on the right) for our oscillating instanton

example. The scalar field profile now leads to a hump in the scale factor, rather than a neck

(λ ≡ η).
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Bubble materialization

In order to obtain the bubble shape at the moment of materialisation, we have to analytically continue the

Euclidean metric

ds2 = dη2 + ρ2(η)
[
dψ2 + sin2(ψ)(dθ2 + sin2 θdφ2)

]
(30)

into Lorentzian signature. This procedure is not single valued. Using analytic continuation

ψ =
π

2
+ it , η = r , (31)

we obtain the bubble geometry

ds2 = −ρ2(r)dt2 + dr2 + ρ̃2(t, r)dΩ2
2 , (32)

where

ρ̃(t, r) ≡ cosh(t)ρ(r) . (33)

We see that the function ρ indeed determines the spatial geometry of the bubble at the moment of

materialisation, t = 0, and thus the neck region becomes a wormhole.
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Negative mode problem: Selected publications
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Negative mode problem

The Euclidean action of system composed of scalar field minimally coupled to gravity is

S =

∫
d4x

√
g

[
− 1

2κ
R+

1

2
∇µϕ∇µϕ+ V (ϕ)

]
, (34)

where κ = 8πG is the reduced Newton’s constant. For the O(4)−symmetric metric ansatz we will use

ds2 = dη2 + ρ2(η)dΩ2
3 = a2(τ)(dτ2 + dΩ2

3) , (35)

where η is (Euclidean) proper time, τ - conformal time, ρ(η) is the scale factor ˙≡ d/dη,′ ≡ d/dτ , and

dΩ2
3 is metric of unit three-sphere,

dΩ2
3 = dχ2 + sin2χ(dθ2 + sin2(θ)dφ2) . (36)

We assume that potential V (ϕ) has characteristic asymmetric double-well shape with local minimum at

some ϕ = ϕ−, local maximum ϕtop and global minimum ϕ+.
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We expand the metric and the scalar field over a O(4)−symmetric background

ds2 = a(τ)2
[
(1 + 2A(τ))dτ2 + γKij(1− 2Ψ(τ))dxidxj

]
,

ϕ = φ(τ) + Φ(τ), (37)

where τ is the conformal time, a and φ are the background field values and A,Ψ and Φ are small

perturbations. Here γKij is the three-dimensional metric on a constant curvature section and as usual

K = ±1, 0.

Under the infinitesimal shift τ → τ + λ the gauge transformations are

δΨ = −Hλ , δΦ = φ′λ , δA = λ′ +Hλ , (38)

where H ≡ a′/a.
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Expanding the total action to second order in perturbations and using the background equations of motion,

we find

S = S(0)[a, φ] + S(2)[A,Ψ,Φ] , (39)

where S(0) is the action of the background solution and S(2)[A,Ψ,Φ] is the quadratic action for scalar

O(4)−symmetric perturbations given by the Lagrangian:

(s)L =
1

2κ
a2
√
γ
[
−6Ψ′2 + 6KΨ2 + κ(Φ′2 + a2

δ2V

δφδφ
Φ2 + 6φ′Ψ′Φ)

−(2κφ′Φ′ − 2κa2
δV

δφ
Φ+ 12HΨ′ + 12KΨ)A− 2(H′ + 2H2 +K)A2

]
.

Note that the variation with respect to A gives the first order (constraint) equation

2κφ′Φ′ − 2κa2
δV

δφ
Φ+ 12HΨ′ + 12KΨ+ 4(H′ + 2H2 +K)A = 0 .

To obtain unconstrained (physical) degree of freedom one should impose gauge condition and solve

constraints.
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G.L., Rubakov, Tinyakov (1985)

The I approach (Lagrangian):

Fixing the gauge with the condition Ψ = 0 and eliminating A with the help of the constraint equation we

obtain the unconstrained quadratic action in the form

S
(2)
LRT =

∫
a4
√
γ

2QLRT

[
H2

a2
Φ′2 − κφ′

3

δV

δφ
Φ′Φ

+

(
κa2

6
(
δV

δφ
)2 +QLRT

δ2V

δφδφ

)
Φ2

]
dτd3x, (40)

with

QLRT := H2 − κφ′2

6
= K − κa2

3
V . (41)
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Tanaka and Sasaki (1992)

The II approach (Hamiltonian):

Fixing the gauge by Φ = 0 and eliminating ΠΦ (matter degrees of freedom), after some canonical

transformation one gets the quadratic part of the Euclidean action (K is the curvature parameter):

S(2) =
(1− 4K)

2

∫ [
(
dq

dτ
)2 + Uq2

]√
γd3xdτ , (42)

with a potential U depending on the background fields

U =
κ

2
φ′2 + φ′(

1

φ′ )
′′ + 1− 4K . (43)

We see that quadratic action for the homogeneous harmonic has “wrong” overall sign. To overcome this

problem it was suggested that analytic continuation q → −iq is performed while integrating over this

mode.
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Khvedelidze, G.L., Tanaka (2000)

The III approach (Hamiltonian):

Fixing the gauge by A = 0 ,ΠΨ = 0 one obtains unconstrained quadratic action for one physical

dynamical degree of freedom as

S(2) =

∫
dτd3x

a2
√
γ

2Q

[
Φ′2 − κφ′

3K
(a2

δV

δφ
− 3φ′H)Φ′Φ

+

(
κ

6K
(a2

δV

δφ
− 3φ′H)2 +Q

(
a2

δ2V

δφδφ
+

3

2
κφ′2

))
Φ2

]
, (44)

with

Q := 1− κ

6K
φ′2 . (45)

Assuming Q > 0 along the bounce and introducing a new variable q = a/
√
Q Φ, after integration by

parts we obtain

S(2) =
1

2

∫ (
q′2 +W [a(τ), φ(τ)]q2

)
dτ

√
γd3x . (46)
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Khvedelidze, G.L. and Tanaka (2000)

G.L. (2000)

Gratton and Turok (2001)

Corresponding Schrödinger equation

− d2

dτ2
q +W [a(τ), φ(τ)]q = Eq , (47)

was shown to have one boundstate, i.e the Coleman-De Luccia bounce has exactly one negative mode.
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Note that by definition at the local maximum, φtop, the second derivative of potential is negative,

V ′′(φtop) < 0.

For −4 <
V ′′(φtop)

H2
top

< 0 CDL bounce does not exists and HM has one negative modes.

For
V ′′(φtop)

H2
top

< −4 CDL comes to existence and has one negative mode, whereas HM gets extra

negative modes.
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Number of negative modes of the oscillating bounces

G.L.(2006)

Oscillating bounces were discused intensively by Hackworth and Weinberg (2005), with the aim to give

them physical interpretation.

Introducing new variable f =
√
aq and passing to the proper time σ, quadratic action of KLT can be

written in the form

S
(2)
E = 2π2

∫ (1
2
ḟ2 +

1

2
U [a(σ), φ(σ)] f2

)
dσ . (48)

So, spectrum of small perturbations about oscillating bounce solution is determined by the following

Schrödinger equation

− d2

dσ2
f + U [a(σ), φ(σ)]f = Ef, (49)

and the number of negative modes of the oscillating bounce solution is the number of bound states of

these Schrödinger equation.
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Potential U is given by

U [a(σ), φ(σ)] =
1

Q

δ2V

δφδφ
− 10ȧ2

a2Q
+

12ȧ2

a2Q2
+

8

a2Q
− 6

a2
− 3Q

a2
− ȧ2

4a2

+
κa2

2Q2
(
δV

δφ
)2 − 2κaȧφ̇

Q2

δV

δφ
− κ

6
(φ̇2 + V ), (50)

where Q = 1− κa2φ̇2/6.
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Numerical results

Let’s parameterize the general quartic scalar field potential as follows:

V = V0 +H2(−β
2
φ2 − g

3
φ3 +

λ

4
φ4) , (51)

with H2 = κV0/3.

Passing to the dimensionless variables

φ̃ =
φ

v
, ã = av , σ̃ = σv , Ṽ0 =

V0
v4

, H̃2 =
H2

v2
, κ̃ = κv2 , (52)

with v2 = 2β/λ we will get the dimensionless equations of motion with the rescaled potential

Ṽ = Ṽ0 + H̃2β(−1

2
φ̃2 − g̃

3
φ̃3 +

1

2
φ̃4) , (53)

where g̃ = gv/β. In what follows we will use dimensionless variables and omit tildes.
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Potential U in the Schrödinger equation Eq. (49) close to the σ = 0 behaves as

U =
3

4σ2
+ U0 +O(σ2) , (54)

where constant U0 depends on the initial value of scalar field and parameters of the background solution

potential V . The regular branch of the wave function f behaves as

f = σ3/2(1 +
1

8
(U0 − E)σ2 +O(σ4)) . (55)

Convenient way to determine the number of bound states of Schrödinger equation in a given potential is

the investigation of the zero energy wave function. The number of nodes of zero energy wave function

exactly counts the number of negative energy states (see e.g. Amann and Quittner (1995) ).
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Let’s describe our results in details on concrete example. For the parameters choice

κ = 0.001 , V0 = 0.1 , β = 70.03 , g =
1

2
√
2
, (56)

the potential V has local maximum at φtop = 0, metastable minimum at φfv = −0.6242212930 and

true vacuum at φtv = 0.8009979884. There exists CDL bounce solution in this potential, oscillating

bounces on top of it with up to N = 7 nodes and, as always, the HM solution with φ ≡ φtop. Numerical

investigation supports quite intuitive and expected result: the bounce with N nodes has exactly N

negative modes. Typical results are demonstrated for N = 3 case on Fig.8 and Fig.9. The zero energy

wave function of Schröedinger equation Eq. (49) has in this case three nodes, which means that there are

exactly three negative energy states for N = 3 oscillating bounce. We also found this states explicitly and

determined their energies: E0 = −0.0013787, E1 = −0.0004362 and E2 = −0.0001207.

Corresponding HM solution has 8 homogeneous negative modes, which is consistent with chosen value of

β.
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Figure 8: Oscillating bounce solution with three nodes of φ.
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Figure 9: Zero energy wave function f of Schrödinger equation of linear perturbations about oscillating

bounce solution with three nodes of φ.
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Number of negative modes of the oscillating instantons

L. Battarra, G. Lavrelashvili, J.-L. Lehners (2012)

Oscillating instantons were studied intensively by Korean group

B.-H. Lee, C. H. Lee, W. Lee, C. Oh (2012).

Analysis of spectrum of small perturbations about these oscillating instantons shows the same pattern:

instanton solution with N nodes had exactly N homogeneous negative modes.
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Figure 10: In the left panel, profile of the scalar field for theN = 1 oscillating instanton. In the central panel,

potential for O(4)–symmetric perturbations. In the right panel, zero mode wavefunction (dotted

line) and negative mode (solid line): the normalization of the wavefunctions is not imposed, so

the overall scale of the vertical axis is irrelevant.
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Figure 11: In the left panel, profile of the scalar field for theN = 2 oscillating instanton. In the central panel,

potential for O(4)–symmetric perturbations. In the right panel, zero mode wavefunction (dotted

line) and negative modes (solid lines): the normalization of the wavefunctions is not imposed, so

the overall scale of the vertical axis is irrelevant.

38 / 54



0 5 10 15 20 25 30

j-

j+

jtop

Η

0 5 10 15 20 25 30
-1

0

1

2

3

Η

U

0 5 10 15 20 25 30

-2

-1

0

1

2

Η

f

Figure 12: In the left panel, profile of the scalar field for theN = 3 oscillating instanton. In the central panel,

potential for O(4)–symmetric perturbations. In the right panel, zero mode wavefunction (dotted

line) and negative modes (solid lines): the normalization of the wavefunctions is not imposed, so

the overall scale of the vertical axis is irrelevant. For N = 4, 5, 6 we found analogous results.
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Recent developments

Hakjoon Lee and Erick Weinberg (2014)

Working in Lagrangian approach with gauge invariant variable

χ ≡ ρ̇Φ− ρφ̇Ψ (57)

and numerically solving with Mathematica pulsation equation for concrete potentials Lee and Weinberg

arrived to conclusion that type A bounces have tunneling negative mode whereas type B bounces don’t!

Figure 13: Type A bounces (left panel) and type B (right panel).
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Koehn, G.L. and Lehners (2015)

Using KLT (Khvedelidze, G.L., Tanaka (2000)) approach,i.e. fixing the gauge by A = 0 ,ΠΨ = 0 one

obtains unconstrained quadratic action for one physical dynamical degree of freedom for K = +1 as

S
(2)
E [Φ] = 2π2

∫
ρ3(η)dη

[ 1

2Q(η)
Φ̇2 +

1

2
U [φ(η), ρ(η)]Φ2

]
, (58)

where the factor Q was given by

Q := 1− κρ2φ̇2

6
, (59)

and the potential U is expressed in terms of the bounce solution as

U [φ(η), ρ(η)] ≡ V ′′(φ)

Q
+

2κφ̇2

Q
+

κ

3Q2

(
6ρ̇2φ̇2 + ρ2V ′2(φ)− 5ρρ̇φ̇V ′(φ)

)
. (60)

The exact form of the fluctuation operator depends on the choice of a weight function, which can be

specified by defining a norm.
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With the natural choice of the norm

||Φ||2 ≡
∫
d4x

√
g Φ2 = 2π2

∫
dη ρ(η)3 Φ2 . (61)

The fluctuation equation diagonalizing the quadratic action Eq. (58) then has the form

− 1

Q

d2Φ

dη2
+

(
Q̇

Q2
− 3ρ̇

ρQ

)
dΦ

dη
+ UΦ = λΦ , (62)

with the potential U given in Eq. (60). Note that the function Q→ 1 at the ends of the interval [0, ηmax],

but for some bounces it can become negative for some interval of η.
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Our main results:

1. If Q > 0, one finds exactly one tunnelling negative mode for all bounces

2. If Q becomes negative in some interval

a). Solution of pulsation equation and first derivative is regular across Q = 0 points.

b). The one ”tunneling” negative mode continues to exist, but on top of it an infinite tower of additional

negative modes arise with support in Q < 0 region.
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Examples of negative Q with parameters far from Planck scale

S. Bramberger, M.Chitishvili, and G.L., (2019).

Take the potential

V (ϕ) = V0 +
λ

8
(ϕ2 − µ2)2 +

ϵ

2µ
(ϕ+ µ) (63)

Choose parameters

V0 = 10−22;λ = 10−19; ϵ = 10−30;µ = 0.4 (64)

Then the potential is given in Figure 14 which has V (ϕtop) five orders of magnitude below the Planck

scale.
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Figure 14: The potential.
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The CdL bounce and the corresponding factor Q is shown in Figure 15. Clearly Q is negative while the

potential is far from Planck.

5.0×1010 1.0×1011 1.5×1011 2.0×1011 2.5×1011 3.0×1011 3.5×1011

-0.5

0.5
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1.5

5.0×1010 1.0×1011 1.5×1011 2.0×1011 2.5×1011 3.0×1011 3.5×1011

-1.0

-0.5

0.5

1.0

Figure 15: Left: Scale factor a(t)/1011 in blue and scalar field ϕ(t) in orange.

Right: Corresponding factor Q
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Figure 16: The four dimensional Ricci scalar close at the maximal radius of the bounce solution in fig 15

.
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Higgs like potential

Markkanen, Rajantie and Stopyra (2018)

Taking into account current experimental values of the standard model parameters the instability scale of

the Higgs potential, λ(µΛ) = 0, is

µΛ = 9.92 · 109Gev (65)

It depends sensitively on the top and Higgs masses and at 1σ the range is

1.16 · 109Gev < µΛ < 2.37 · 2.37 · 1011Gev. The top of the potential barrier lies at

ϕtop = 4.64 · 1010Gev (66)

and the barrier height is

Vtop = 3.46 · 1038Gev4 = (4.31 · 109Gev)4 (67)
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S. Bramberger, M.Chitishvili, and G.L., (2019).

Higgs potential can be modelled as

VH = V0 +
λH(ϕ)

4
ϕ4 (68)

λH = q

[
(ln

ϕ

MPl
)4 − (ln

Λ

MPl
)4
]

(69)

where q is fitting parameter, Λ is instability scale and MPl =
√
8πG ≈ 2.435 · 1018Gev. Numerically

we found that for Λ < Λ∗ Q is everywhere positive and for Λ > Λ∗ Q develops region with Q < 0.

Choosing parameters q = 10−7 and V0 = 10−12 we found 0.57 < Λ∗ < 0.6 in MPl = 1 units, see

Figure 17. So, for realistic Higgs like potential negative mode problem shows up only at the Planck values

of the instability scale.
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Figure 17: Here we show the values of the scalar field ϕ, scale factor ρ and the function Q for the Higgs

like potential Eq. (68). The top figure shows the CdL instanton for Λ = 0.57 while the bottom

one has Λ = 0.6. The images on the left are zoomed in versions of the full instantons shown

on the right. MPl = 1 units are used.
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Historical Summary of the negative mode problem

Year / Authors Tunneling negative mode Additional negative modes

1985, G.L., Rubakov Tinyakov Not discussed Infinitely many

1992, Tanaka, Sasaki None None

2000, Khvedelidze, G.L., Tanaka One Not discussed (only Q > 0 case)

2000, Gratton, Turok One Not discussed (only Q > 0 case)

2006, G.L. N for the N-th oscillating bounce Not discussed (only Q > 0 case)

2014, Lee, Weinberg One / None Infinitely many

2015, Koehn, G.L., Lehners One Infinitely many in Q < 0 case

Tab 1. Conclusion about the number of negative modes reached in different investigations.
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Concluding remarks

I. We have shown that instantons with necks can be produced as a result of quantum tunnelling in the

decay of a metastable vacuum in scalar field theories with non-minimal coupling to gravity (while they

cannot be produced in the case of minimal coupling).

Challenge I:

- Spectrum of linear perturbations (number of negative modes)

- Lorentzian evolution of the bubble after materialization and global structure of space-time

- Existence of wormhole solutions in other NEC violating theories

II. It was found that with the proper reduction scheme CdL bounce has exactly one negative mode for

Q > 0 backgrounds. The oscillating instantons and bounces withN nodes have exactlyN homogeneous

negative modes in their spectrum of linear perturbations. Existence of more than one negative modes

makes obscure the relation of these oscillating bounce solutions to the false vacuum decay processes.

Challenge II:

- How to interpret an infinite tower of additional negative modes for Q < 0 cases: Their existence and

significance remain mysterious even after 34 years.
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Thank you for attention!
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