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Introduction



Radiative transitions: basics

Two dominant single-photon-transition processes:

(1) magnetic dipole transitions (M1)

(2) electric dipole transitions (E1)
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PH = (MH ,0)

PH′ =
(√

k2γ +M2
H′
,−k

)

(kγ ,k) kγ =
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2 −MH′
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◦ QWG coll CERN-2005-005 Yellow Book hep-ph/0412158



M1 transitions in the non-relativistic limit

(1) M1 transitions in the non-relativistic limit:
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If kγ〈r〉 ≪ 1 j0(kγr/2) = 1− (kγr)2/24 + . . .

• n = n′ allowed transitions

• n 6= n′ hindered transitions



ΓJ/ψ→ηcγ

At leading order in the multipole expansion, M1 (allowed) transition rates are

independent from the low-energy dynamics (i.e. the quarkonium wave-function).

As an example consider

ΓJ/ψ→ηcγ =
16

27
α
k3γ

m2
c

≈ 2.83 keV

from MJ/ψ ≈ 3097 MeV and Mηc ≈ 2984 MeV (kγ ≈ 111 MeV).

To be compared with the PDG value ΓJ/ψ→ηc γ = 1.6± 0.4 keV .



E1 transitions in the non-relativistic limit

(2) E1 transitions in the non-relativistic limit:

ΓE1
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γ
=
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where

E(nL→ n′L′) =

∫ ∞

0
dr r2Rn′L′ (r)RnL(r)

[

kγr

2
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)

− j1

(
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≈ I3(nL→ n′L′)×
[

1 +O
(

(kγr)
2
)]

if kγ〈r〉 ≪ 1

IN (nL→ n′L′) =

∫ ∞

0
dr rN Rn′L′ (r)RnL(r)

Note that, for equal energies and masses, M1 transitions are suppressed by a factor

1/(m〈r〉)2 ∼ v2 with respect to E1 transitions, which are much more common.

E.g. B(χb0(1P ) → Υ(1S)γ) = (1.94± 0.27)%, B(χb1(1P ) → Υ(1S)γ) = (35.0± 2.1)%,

B(χb2(1P ) → Υ(1S)γ) = (18.8± 1.1)%, and B(hb(1P ) → ηb(1S)γ) = (52+6
−5)%.



Γχc(1P )→J/ψγ/Γχb(3P )→Υ(3S)γ

Even at leading order in the multipole expansion, E1 transition rates depend on the

low-energy dynamics (i.e. on the quarkonium wave-function).

As an example consider

Γχc(1P )→J/ψγ

Γχb(3P )→Υ(3S)γ

≈ e2c k
(c) 3
γ 〈r2〉(c)

e2b k
(b) 3
γ 〈r2〉(b)

≈ 33+16
−9

from Mχc(1P ) ≈ hc(1P ) ≈ 3525 MeV, MJ/ψ ≈ 3097 MeV, Mχb(3P ) ≈ 10530 MeV,

MΥ(3S) ≈ 10355 MeV [k
(c)
γ ≈ 402 MeV and k

(b)
γ ≈ 174 MeV],

and assuming 〈r2〉(b) ≈ (1.5± 0.5)× 〈r2〉(c).



Relativistic corrections

• Relativistic corrections may be sizeable:

about 30% for charmonium (v2c ≈ 0.3) and 10% for bottomonium (v2b ≈ 0.1).

• For quarkonium radiative transitions, essentially one model-dependent calculation has

been used for over twenty years to account for relativistic corrections, based upon:

relativistic equation with scalar and vector potentials;

non-relativistic reduction;

a somewhat imposed relativistic invariance to calculate recoil corrections.

◦ Grotch Owen Sebastian PR D30 (1984) 1924

see also QWG CERN Yellow Book CERN-2005-005, hep-ph/0412158



Effective Field Theories



Relativistic corrections and EFTs

Nowadays, however, effective field theories (EFTs) for quarkonium allow

• to derive expressions of radiative transitions directly from QCD;

• with a well specified range of applicability;

• to determine a reliable error associated with the theoretical determinations;

• to improve the theoretical determinations in a systematic way.

◦ Brambilla Pineda Soto Vairo RMP 77 (2005) 1423



Energy scales

• p ∼ 1

r
∼ mv, E ∼ mv2; in a non-relativistic system v ≪ 1

• ΛQCD

• kγ

mv2 & ΛQCD for weakly-coupled quarkonia (J/ψ, ηc, Υ(1S), ηb(1S), ...);

mv2 ≪ ΛQCD . mv for strongly-coupled quarkonia (excited states);

kγ ∼ mv2 for hindered M1 transitions, most E1 transitions;

kγ ∼ mv4 for allowed M1 transitions.
⇒ kγr ≪ 1



Degrees of freedom

• Degrees of freedom at scales of order mv2:

Q-Q̄ states, with energy ∼ ΛQCD, mv2 and momentum . mv

⇒ (i) singlet S (ii) octet O [if mv2 & ΛQCD]

Gluons with energy and momentum ∼ ΛQCD, mv2 [if mv2 & ΛQCD]

Photons of energy and momentum of order mv2.

• Power counting:

p ∼ 1

r
∼ mv;

all gauge fields are multipole expanded: A(R, r, t) = A(R, t) + r ·∇A(R, t) + . . .

and scale like (ΛQCD or mv2)dimension.



EFT Lagrangian

LpNRQCD = −1

4
FaµνF

µν a − 1

4
F em
µν F

µν em +
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∑

ℓ=1

q̄ℓ (iγµD
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S
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m
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)

O

}
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{
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}

+
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2
Tr
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O†r · gEO+O†Or · gE
}
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+ · · ·

+Lγ

LO in r

NLO in r



Lγ

Lγ = LM1
γ + LE1

γ + . . .

LM1
γ = Tr

{

1

2m
VM1
1
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}

S

+
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2m
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1
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}
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+
1

4m2

VM1
2

r

{

S†,σ ·
[

r̂×
(

r̂× eeQBem
)]

}

S

+
1

4m2

VM1
3

r

{
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}

S

+
1

4m3
VM1
4

{

S†,σ · eeQBem
}

∇
2
rS + · · ·

}

◦ Brambilla Jia Vairo PR D73 (2006) 054005



Lγ

LE1
γ = Tr

{

V E1
1 S†r · eeQEemS

+V E1
1 O†r · eeQEemO [if mv2 & ΛQCD]

+
1

24
V E1
2 S†r · [(r ·∇)2eeQEem]S

+
i

4m
V E1
3 S†{∇·, r× eeQBem}S

+
i

12m
V E1
4 S†{∇r·, r× [(r ·∇)eeQBem]}S

+
1

4m
V E1
5 [S†,σ] · [(r ·∇)eeQBem]S

− i

4m2
V E1
6 [S†,σ] · (eeQEem ×∇r)S + · · ·

}

◦ Brambilla Pietrulewicz Vairo PR D85 (2012) 094005



Matching

The matching consists in the calculation of the coefficients V .

They get contributions from

• hard modes (∼ m):

ψ̄(iD/−m)ψ → ψ†

(

iD0 +
D2

2m
+
cemF
2m

σ · eeQBem + · · ·
)

ψ

From HQET:

cemF ≡ 1 + κem = 1 +
2

3

αs

π
+ . . .

is the quark magnetic moment.

◦ Grozin Marquard Piclum Steinhauser NP B789 (2008) 277 (3 loops)

• soft modes (∼ mv).



M1 operator at O(1)

VM1
1

{

S†,
σ · eBem

2m

}

S

VM1
1 =

(

hard

)

×
(

soft

)

•
(

hard

)

= cemF = 1 +
2αs(m)

3π
+ · · ·

• Since σ · eBem(R) behaves like the identity operator

to all orders VM1
1 does not get soft contributions.



+ +

=

cemF
σ · eeQBem

2m

tf

t1

t

t2

ti

∫ tf

ti

dt

∫ tf

ti

dt

Diagrammatic factorization of the magnetic dipole coupling in the SU(3)f limit.

The argument is similar to the factorization of the QCD corrections in b→ u e−ν̄e, which leads to

Leff = −4GF /
√
2 Vub ēLγµνL ūLγ

µbL to all orders in αs.



M1 operator at O(1)

VM1
1

{

S†,
σ · eBem

2m

}

S

VM1
1 = 1 +

2αs(m)

3π
+ · · ·

No large quarkonium anomalous magnetic moment!

◦ Dudek Edwards Richards PR D73 (2006) 074507 (lattice)



M1 operators at O(v2)

1
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r
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cFσ ·B/m

A ·Aem/m csσ · (Aem ×E)/m2

=

(

hard

)

×
(

soft

)

• to all orders

(

hard

)

= 2cF − cs = 1 ;

(

soft

)

= r2V ′
s/2

◦ Brambilla Gromes Vairo PL B576 (2003) 314 (Poincaré invariance)

Luke Manohar PL B286 (1992) 348 (reparameterization invariance)

VM1
2 = r2V ′

s/2 and VM1
3 = 0

No (effective) scalar interaction!



M1 operators at O(v2)

VM1
4

{

S†,
σ · eBem

4m3

}

∇
2
rS

VM1
4 =

(

hard

)

×
(

soft

)

•
(

hard

)

= 1

◦ Manohar PR D56 (1997) 230 (reparameterization invariance)

•
(

soft

)

= 1 to all orders

◦ Brambilla Pietrulewicz Vairo PR D85 (2012) 094005

VM1
4 = 1



O(v2) wave-function corrections to weakly-coupled quarkonia

Coupling of photons with octets: VM1
1

{

O†,
σ · eBem

2m

}

O [if mv2 & ΛQCD]

r · gE

×δZH = 0+ + +

• If mv2 ∼ ΛQCD the above graphs are potentially of order Λ2
QCD/(mv)

2 ∼ v2.

• The contribution vanishes, for σ · eBem(R) behaves like the identity operator.

• There are no non-perturbative contributions at O(v2)!

• This is not the case for strongly-coupled quarkonia:

non-perturbative corrections affect the operator
1

m3

VM1
5

r2

{

S†,σ · eeQBem
}

S.



M1 hindered transitions

• One new operator contributes:

− 1

16m2
cemS

[

S†,σ ·
[

−i∇r×, ri(∇ieeQEem)
]

]

S

• Two new wave-function corrections contribute:

(1) induced by the spin-spin potential V ss;

(2) recoil correction induced by the spin-orbit potential.

Due to the recoil, the final state develops a nonzero P -wave component suppressed by a factor

v kγ/m (through the spin-orbit operator − 1

4m2

V
(0) ′
S

2
Tr
{

{S†,σ} · [r̂× (−i∇)] S
}

),

which, in a n3S1 → n′ 1S0 γ transition, can be reached from the initial 3S1 state through a 1/v

enhanced E1 transition.



M1 transitions

Γn3S1→n1S0 γ
=

4

3
αe2Q

k3γ

m2

[

1 +
4αs(m)

3π
− 5

3
〈nS| p

2

m2
|nS〉

]

Γn3S1→n′ 1S0 γ
=

4

3
αe2Q

k3γ

m2

[

〈n′S|
(

−
k2γr

2

24
− 5

6

p2

m2

)

|nS〉

+
1

m2

〈n′S|V ss(r)|nS〉
E

(0)
n − E

(0)
n′

]2

for n 6= n′

Γn3PJ→n1P1 γ
=

4

3
αe2Q

k3γ

m2

[

1 +
4αs(m)

3π
− dJ 〈nP | p

2

m2
|nP 〉

]

Γn1P1→n3PJ γ
= (2J + 1)

4

9
αe2Q

k3γ

m2

[

1 +
4αs(m)

3π
− dJ 〈nP | p

2

m2
|nP 〉

]

where d0 = 1, d1 = 2 and d2 = 8/5.

◦ Brambilla Jia Vairo PR D73 (2006) 054005



E1 transitions

E1 transitions always involve excited states.

• Operators contributing at relative order v2 to E1 transitions are not affected by

(perturbative or non-perturbative) soft corrections.

+

OOO O
e me m

+

V VP
e m

P
e m

V E1
1 = V E1

2 = V E1
3 = V E1

4 = 1

V E1
5 = cemF = 1 +

2αs(m)

3π
+ · · · , V E1

6 = 2cemF − 1 = 1 +
4αs(m)

3π
+ · · ·

◦ Brambilla Pietrulewicz Vairo PR D85 (2012) 094005



E1 transitions

E1 transitions always involve excited states.

• However, non-perturbative corrections affect the quarkonium wave-functions:

at large distances the quarkonium potentials are non-perturbative.

• For weakly-coupled quarkonia, non-perturbative corrections to the quarkonium

wave-functions also involve octet fields and are of

• relative order v2 (if ΛQCD ∼ mv2)

• or suppressed by αsv2 (if ΛQCD ≪ mv2).

Unlike M1 dipoles, E1 dipoles do not commute with the octet Hamiltonian.



E1 transitions: color octet contributions

n3PJ n′3S1

δZ
n3PJ

2 n3PJ n′3S1

δZ
n′3S1

2

eeQr · E
em eeQr · E

em

1a 1b

n3PJ
gr · E gr ·Em3PJ n′3S1

2

eeQr ·E
em

n3PJ m3S1 n′3S1
gr ·Egr ·E gr · Egr · E

n′3S1n3PJ m3DJ

3a 3b

eeQr · E
em eeQr · E

em

gr · E gr · E
n3PJ n′3S1

eeQr · E
em

4

where

δZH(λ) = −
∂δEH(λ)

∂E
(0)
H

= −1

6

∫ ∞

0
dt t 〈0|gEa(R, t)φ(t, 0)adj

abgE
b(R, 0)|0〉 〈H(λ)|re−i(H

(0)
O

−E
(0)
H

)tr|H(λ)〉

and similarly for the other contributions.



E1 transitions

Γn3PJ→n′ 3S1 γ
= ΓE1

n3PJ→n′ 3S1 γ

[

1 +RS=1
nn′ (J)−

k2γ

60

I5(n1 → n′0)

I3(n1 → n′0)

− kγ

6m
+ κem

kγ

2m

(

J(J + 1)

2
− 2

)]

Γn1P1→n′ 1S0 γ
= ΓE1

n1P1→n′ 1S0 γ

[

1 +RS=0
nn′ − kγ

6m
−
k2γ

60

I5(n1 → n′0)

I3(n1 → n′0)

]

Γn3S1→n′ 3PJ γ
=

2J + 1

3
ΓE1
n3S1→n′ 3PJ γ

[

1 +RS=1
nn′ (J)−

k2γ

60

I5(n′1 → n0)

I3(n′1 → n0)

+
kγ

6m
− κem

kγ

2m

(

J(J + 1)

2
− 2

)]

where RS=1
nn′ (J) and RS=0

nn′ are the (non-perturbative) initial and final state corrections.

◦ Brambilla Pietrulewicz Vairo PR D85 (2012) 094005



J/ψ → ηcγ



J/ψ → ηcγ

ΓJ/ψ→ηcγ =

∫

d3k

(2π)3
(2π)δ(E

J/ψ
p − k − Eηck ) |〈γ(k)ηc|Lγ |J/ψ〉|2

We assume the J/ψ and ηc to be Coulombic and weakly coupled: mv2 & ΛQCD.



J/ψ → ηcγ

Up to order v2 the transition J/ψ → ηcγ is completely accessible by perturbation theory.

ΓJ/ψ→ηcγ =
16

3
αe2c

k3γ

M2
J/ψ

[

1 + 4
αs(MJ/ψ/2)

3π
− 32

27
αs(pJ/ψ)

2

]

The normalization scale for the αs inherited from κem is the charm mass

(αs(MJ/ψ/2) ≈ 0.35 ∼ v2), and for the αs, which comes from the Coulomb potential, is

the typical momentum transfer pJ/ψ ≈ 2mαs(pJ/ψ)/3 ≈ 0.8 GeV ∼ mv.

ΓJ/ψ→ηcγ = (1.5± 1.0) keV

to be compared with the non-relativistic result ≈ 2.83 keV.

◦ Brambilla Jia Vairo PR D73 (2006) 054005



Improved determination of M1 transitions

• Exact incorporation of the static potential.

• Renormalon cancellation.

Vs,RS′ (ν, νf , νr, r) =























Vs + 2δmRS′

∣

∣

ν=1/r
≡

3
∑

k=0

V
(k)

s,RS′
αk+1

s (1/r) if r < ν−1
r ,

Vs + 2δmRS′

∣

∣

ν=ν
≡

3
∑

k=0

V
(k)

s,RS′
αk+1

s (ν) if r > ν−1
r .

◦ Kiyo Pineda Signer NP B841 (2010) 231



Improved determination of M1 transitions

• Exact incorporation of the static potential.

• Renormalon cancellation.

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 1  1.5  2  2.5  3

Γ(
J/

ψ
 →

 η
c(

1S
)γ

) 
(k

eV
)

ν (GeV)

O(α)

O(α2
)

O(α3
)

O(α4
)

ΓJ/ψ→ηcγ = 2.12± 0.40 keV

◦ Pineda Segovia PR D87 (2013) 074024



ΓJ/ψ→ηcγ as a probe of the J/ψ potential

ΓJ/ψ→ηcγ =
16

3
αe2c

k3γ

M2
J/Ψ

(

1 +
4

3

αs(MJ/Ψ/2)

π
− 2

3

〈1|rV ′
s |1〉

MJ/Ψ

+ 2
〈1|Vs|1〉
MJ/Ψ

)

• If Vs = −4

3

αs(µ)

r
: −2

3

〈1|rV ′
s |1〉

MJ/Ψ

+ 2
〈1|Vs|1〉
MJ/Ψ

= −32

27
αs(µ)

2 < 0

• If Vs = σr: −2

3

〈1|rV ′
s |1〉

MJ/Ψ

+ 2
〈1|Vs|1〉
MJ/Ψ

=
4

3

σ

MJ/Ψ

〈1|r|1〉 > 0

A scalar interaction would add a negative contribution: −2〈1|V scalar|1〉/MJ/Ψ.



J/ψ → ηcγ (experimental status)

• Only one direct experimental measurement existed for long time:

ΓJ/ψ→ηcγ = (1.14± 0.23) keV

◦ Crystal Ball coll. PR D34 (1986) 711

• The situation changed in the last few years:

ΓJ/ψ→ηcγ = (1.85± 0.08± 0.28) keV

◦ CLEO coll. PRL 102 (2009) 011801

ΓJ/ψ→ηcγ = (2.98± 0.18+0.15
−0.33) keV

◦ from KEDR coll. PL B738 (2014) 391

number not reported by the PDG!



J/ψ → ηcγ (experimental & theoretical status)

0

2

4
Γ(

J/
ψ

 →
 η

c(
1S

)γ
) 

(k
eV

)
Experiment Theoretical predictions PDG upper limit

PDG lower limit

Crystal Ball (86)

CLEO (09)

KEDR (10)

Disp. relations (80)

Sum Rules (84)

Sum Rules (85)

Latt. QCD (13)

HPQCD (12)

Eff. theory (06)

Eff. theory (13)

◦ Pineda Segovia PR D87 (2013) 074024



ΓΥ(1S)→ηb(1S)γ



ΓΥ(1S)→ηb(1S)γ

We assume the Υ(1S) and ηb(1S) to be Coulombic and weakly coupled: mv2 & ΛQCD.

In the improved perturbative framework

ΓΥ(1S)→ηb(1S)γ
= (15.18± 0.51) eV

◦ Pineda Segovia PR D87 (2013) 074024

To be compared with the NLO calculation (without resummation):

ΓΥ(1S)→ηb(1S)γ
= (kγ/71 MeV)3 (15.1± 1.5) eV

◦ Brambilla Jia Vairo PR D73 (2006) 054005



M1 hindered transitions



ΓΥ(2S)→ηb(1S)γ , Γhb(1P )→χb0,1(1P )γ and Γχb2(1P )→hb(1P )γ

We assume n = 2 bottomonia to be Coulombic and weakly coupled: mv2 & ΛQCD.

Γhb(1P )→χb0(1P ) γ = 0.962± 0.035 eV

Γhb(1P )→χb1(1P ) γ = 8.99± 0.55 meV

Γχb2(1P )→hb(1P ) γ = 118± 6 meV

ΓΥ(2S)→ηb(1S)γ
= 6+26

−6 eV

◦ Pineda Segovia PR D87 (2013) 074024



Υ(2S) → ηb(1S)γ

Υ(2S)→γ ηb(1S)
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• Already CLEO’s upper limit was problematic for many models.

• More recently BRΥ(2S)→ηb(1S)γ
= 3.9± 1.1+1.1

−0.9 × 10−4 [BABAR]

and BRΥ(2S)→ηb(1S)γ
= 6.1+0.6

−0.7
+0.9
−0.6 × 10−4 [Belle]

◦ BABAR PRL 103 (2009) 161801, Belle PRL 121 (2018) 232001

But ok with ΓΥ(2S)→ηb(1S)γ
= 6+26

−6 eV, BRΥ(2S)→ηb(1S)γ
= 2+9

−2 × 10−4, kγ = 612 MeV.



Υ(2S) → ηb(1S)γ

Resummation of the static potential contributions is crucial for ΓΥ(2S)→ηb(1S)γ
.
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• Strong cancellation between −〈1S|5p2/(6m2)|2S〉 and 〈1S|V ss/[m2(E
(0)
2 − E

(0)
1 )]|2S〉.

◦ Pineda Segovia PR D87 (2013) 074024



E1 transitions



E1 charmonium transitions

E1 transitions are sensitive to the quarkonium wave-function even at leading order.

A systematic treatment that includes in a consistent way non-perturbative relativistic

corrections to the wave functions (mostly known from lattice) is still missing. Partial

results include some (but not all) NLO relativistic corrections.

◦ Pietrulewicz PoS ConfinementX (2012) 135

For bottomonium, relying on its Coulombic nature, a more systematic study is available.



E1 bottomonium transitions: set up

• We consider the E1 transitions χbJ (1P ) → Υ(1S)γ and hb(1P ) → ηb(1S)γ.

• We assume mbv
2 ≫ ΛQCD and make the calculation accurate up to order v2.

Under this condition:

• the wave function can be computed perturbatively;

• non-perturbative corrections to the wave function (coming from the potentials

and the octet) may be neglected.

• We take as central value the one corresponding to the renormalization scale

ν = 1.25 GeV, which is the scale that solves the self-consistency relation for the

Υ(1S) Bohr radius at one loop: ν =
2mbαs(ν)

3

• We estimate the uncertainty as the largest between 1/2 of the maximum

difference between the leading order and the order v2 result and the variation of

the order v2 result over the range 1 GeV ≤ ν ≤ 3 GeV.

• Relaxing the condition mbv
2 ≫ ΛQCD to mbv

2 ∼ ΛQCD will enlarge the

uncertainties of at least a factor 2.

◦ Segovia Steinbeißer Vairo PR D99 (2019) 074011



Improved determinations of E1 transitions
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On the example of the χb1(1P ) → Υ(1S)γ transition:

blue curve: LO; orange curve: NLO; green curve: NNLO; red curve: NNNLO.

◦ Segovia Steinbeißer Vairo PR D99 (2019) 074011



χb0(1P ) → Υ(1S)γ
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χb0(1P ) → γΥ(1S)

blue curve: LO; orange curve: LO + LE1
γ ; black curve: final order v2 result:

Γ(χb0(1P ) → Υ(1S)γ) = 28+2
−2 keV

◦ Segovia Steinbeißer Vairo PR D99 (2019) 074011



χb1(1P ) → Υ(1S)γ
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χb1(1P ) → γΥ(1S)

blue curve: LO; orange curve: LO + LE1
γ ; black curve: final order v2 result:

Γ(χb1(1P ) → Υ(1S)γ) = 37+2
−2 keV

◦ Segovia Steinbeißer Vairo PR D99 (2019) 074011



χb2(1P ) → Υ(1S)γ

blue curve: LO; orange curve: LO + LE1
γ ; black curve: final order v2 result:

Γ(χb2(1P ) → Υ(1S)γ) = 45+3
−3 keV

◦ Segovia Steinbeißer Vairo PR D99 (2019) 074011



hb(1P ) → ηb(1S)γ

blue curve: LO; orange curve: LO + LE1
γ ; black curve: final order v2 result:

Γ(hb(1P ) → ηb(1S)γ) = 63+6
−6 keV

◦ Segovia Steinbeißer Vairo PR D99 (2019) 074011



Comparison with the literature

Mode LO O(v2) CQM R GI BT LFQM SNR0/1

χb0(1P ) → Υ(1S)γ 28.5 28.4 28.1 29.9 23.8 25.7 - 26.6/24.3

χb1(1P ) → Υ(1S)γ 36.0 37.4 35.7 36.6 29.5 29.8 - 33.6/30.0

χb2(1P ) → Υ(1S)γ 41.0 44.8 39.2 40.2 32.8 33.0 - 38.2/32.6

hb(1P ) → ηb(1S)γ 55.2 63.2 43.7 52.6 35.7 - 37.5 55.8/36.3

◦ Segovia Ortega Entem Fernandez PR D93 (2016) 074027 [CQM]

Ebert Faustov Galkin PR D67 (2003) 014027 [R]

Godfrey Moats PR D93 (2015) 054034 [GI]

Grotch Owen Sebastian PR D30 (1984) 1924 [BT]

Shi EPJ C77 (2017) 253 [LFQM]

Li Chao CTP 52 (2009) 653 [SNR0/1]



Total widths

Mode Bi = Γi/Γ [PDG] Γi Γ

χb0(1P ) → Υ(1S)γ (1.94± 0.27)% 28+2
−2 keV 1.46+0.2

−0.2 MeV

χb1(1P ) → Υ(1S)γ (35.0± 2.1)% 37+2
−2 keV 107+9

−9 keV

χb2(1P ) → Υ(1S)γ (18.8± 1.1)% 45+3
−3 keV 238+21

−21 keV

hb(1P ) → ηb(1S)γ (52+6
−5)% 63+6

−6 keV 121+18
−16 keV

◦ Segovia Steinbeißer Vairo PR D99 (2019) 074011



Conclusions



EFTs provide a description of quarkonium electromagnetic transitions in terms of

systematic expansions in αs and v. This description shows that:

• There is no scalar interaction.

• The quarkonium anomalous magnetic moment is small and positive:

κem = 2αs/(3π) + ...

• M1 transitions involving the lowest quarkonium states may be described

at relative order v2 entirely by perturbation theory.

• Theory expectations for M1 transitions are consistent with data.

• E1 transitions require the calculation of non-perturbative corrections to the

quarkonium wave-functions. These can be calculated from the quarkonium

potentials evaluated on the lattice, which are mostly known.

• Assuming the χbJ (1P ) and hb(1P ) to be weakly coupled Coulombic bound states

we have predicted the transition widths for χbJ (1P ) → Υ(1S)γ and

hb(1P ) → ηb(1S)γ providing eventually also predictions for the total widths.
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