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Introduction



Radiative transitions: basics

Two dominant single-photon-transition processes:
(1) magnetic dipole transitions (M1)
(2) electric dipole transitions (E1)
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M1 transitions in the non-relativistic limit

(1) M1 transitions in the non-relativistic limit:
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At leading order in the multipole expansion, M1 (allowed) transition rates are
independent from the low-energy dynamics (i.e. the quarkonium wave-function).

As an example consider

16 k3
FJ/¢_>770’Y = 2—7 « w ~ 2.83 keV

from M, ~ 3097 MeV and M, ~ 2984 MeV (k, =~ 111 MeV).

To be compared with the PDG value I" 5, _,,, . = 1.6 = 0.4keV .



E1 transitions in the non-relativistic limit

(2) E1 transitions in the non-relativistic limit:
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Note that, for equal energies and masses, M1 transitions are suppressed by a factor
1/(m(r))? ~ v* with respect to E1 transitions, which are much more common.

E.g. B(xp0(1P) — Y(1S5)v) = (1.94 £ 0.27) %, B(xp1(1P) — YT(15)v) = (35.0 & 2.1) %,
B(xp2(1P) — T(15)7) = (18.8 & 1.1) %, and B(hy (1P) — n,(18)y) = (5218)%.



Fxc(lp)—ﬂ/m/FXb(SP)—>T(3S)W

Even at leading order in the multipole expansion, E1 transition rates depend on the
low-energy dynamics (i.e. on the quarkonium wave-function).

As an example consider

TPy ajpy €2 kP (r2)(0)

~ ~ 334_%6
Co3P) =13y €2 kY)? (r2) )

from ch(lp) ~ hc(lp) ~ 3525 MeV, MJ/¢ ~ 3097 MeV, be(gp) ~ 10530 MeV,
My(ss) ~ 10355 MeV  [k{”) ~ 402 MeV and k!” ~ 174 MeV],
and assuming (r2)(®) x~ (1.5 4+ 0.5) x (r2)(),



Relativistic corrections

e Relativistic corrections may be sizeable:
about 30% for charmonium (v2 = 0.3) and 10% for bottomonium (v? ~ 0.1).

e For quarkonium radiative transitions, essentially one model-dependent calculation has
been used for over twenty years to account for relativistic corrections, based upon:

relativistic equation with scalar and vector potentials;
non-relativistic reduction;
a somewhat imposed relativistic invariance to calculate recoil corrections.

0 Grotch Owen Sebastian PR D30 (1984) 1924
see also QWG CERN Yellow Book CERN-2005-005, hep-ph/0412158



Effective Field Theories



Relativistic corrections and EFT's

Nowadays, however, effective field theories (EFTs) for quarkonium allow

e to derive expressions of radiative transitions directly from QCD;
e with a well specified range of applicability;
e to determine a reliable error associated with the theoretical determinations;

e to improve the theoretical determinations in a systematic way.

o Brambilla Pineda Soto Vairo RMP 77 (2005) 1423



Energy scales

1 : L
p~=~mv, E~mv? in a non-relativistic system v < 1
-

Aqcp
k"Y

mv? 2 Aqep for weakly-coupled quarkonia (J/v, ne, T(15), np(1S), ...);
mv? < Aqep < mo for strongly-coupled quarkonia (excited states);

k~ ~ muv? for hindered M1 transitions, most E1 transitions;

. = kyr<l1
k~ ~ mu* for allowed M1 transitions.



Degrees of freedom

o Degrees of freedom at scales of order mv?:

Q-Q states, with energy ~ A e, mv? and momentum < mu
= (i) singlet S (i) octet O [if mv? > Aqep]

Gluons with energy and momentum ~ Aqcp, mv? [if mv? > Aqep]

Photons of energy and momentum of order mwv?2.

e Power counting:
1

P~ — ~ Mo,

T
all gauge fields are multipole expanded: A(R,r,t) = A(R,t) +r - VA(R,t) + ...
and scale like (Aqcp or mo?)dimension,



EFT Lagrangian
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o Brambilla Jia Vairo PR D73 (2006) 054005
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o0 Brambilla Pietrulewicz Vairo PR D85 (2012) 094005



Matching

The maiching consists in the calculation of the coefficients V.
They get contributions from

e hard modes (~ m):

2m 2m

(4 . D? cF
(i —m)p — ¢ (ZDo—i- + a-eeQBem+--->¢

From HQET:

2
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T

is the quark magnetic moment.
0 Grozin Marquard Piclum Steinhauser NP B789 (2008) 277 (3 loops)

e soft modes (~ mu).



M1 operator at O(1)

VlMl {ST, o - eBf™ } ;

2m

VML = (hard) X (soft)

o (hard) = =1+ 2as (m) +

37

e Since o - eB“™(R) behaves like the identity operator
to all orders VVM! does not get soft contributions.



Diagrammatic factorization of the magnetic dipole coupling in the SU(3) ¢ limit.

The argument is similar to the factorization of the QCD corrections inb — w e~ Ue, which leads to

Leg = —4GF/\/§ Vub ELYuVL UryH by, to all orders in os.



M1 operator at O(1)

vll\/[l {ST, o - eB®™ } s

2m

2a5(m)

37

VlMl — 1+

No large quarkonium anomalous magnetic moment!

o0 Dudek Edwards Richards PR D73 (2006) 074507 (lattice)



M1 operators at O(v?)

1 v

Tr

1 vt
2

{ST,O'- [f‘x (f‘XeeQBem)}}S and {ST,a-eeQBem}S

4m

+ | +.. = (hard) X (soft)
A - A /m g cso - (A x E)/m?

e to all orders (hard) =2cp —cs=1; <soft> =r2V!/2

o Brambilla Gromes Vairo PL B576 (2003) 314 (Poincaré invariance)

Tr

Luke Manohar PL B286 (1992) 348 (reparameterization invariance)

Vot =r2V//2 and V3!l =0

No (effective) scalar interaction!



M1 operators at O(v?)

v {ST, 7B } v2s

4m3

VML = <hard> X (soft)
° (hard) =1

o0 Manohar PR D56 (1997) 230 (reparameterization invariance)

° (soft) =1 to all orders

o Brambilla Pietrulewicz Vairo PR D85 (2012) 094005



O(v?) wave-function corrections to weakly-coupled quarkonia

+ o - eBf™

2m

Coupling of photons with octets: VM1 {O } O [if mv? > Aqep]

e If mv? ~ Aqcp the above graphs are potentially of order A2, /(mv)? ~ v?.
e The contribution vanishes, for o - eB¢™(R)) behaves like the identity operator.

e There are no non-perturbative contributions at O (v?)!

e This is not the case for strongly-coupled quarkonia:

. . 1 vM
non-perturbative corrections affect the operator — 5
m T

{ST, o - eeQBem} S.



M1 hindered transitions

e One new operator contributes:

1
16m 2

cg” |:ST,0'- [—er,ri(vieeQEem)H S

e Two new wave-function corrections contribute:
(1) induced by the spin-spin potential 1/5%;

(2) recoll correction induced by the spin-orbit potential.

Due to the recoil, the final state develops a nonzero P-wave component suppressed by a factor

1 v’
v k~ /m (through the spin-orbit operator — py 32 Tr {{ST, o} [t X (=iV)] S}),

which, inan3S; — n’ 1Sy ~y transition, can be reached from the initial 35 state through a 1 /v
enhanced E1 transition.



M1 transitions

3

I' s 1 = éozeQ k—’y
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3
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where dp = 1, d; = 2 and ds = 8/5.

oBrambilla Jia Vairo PR D73
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E1 transitions

E1 transitions always involve excited states.

o Operators contributing at relative order v2 to E1 transitions are not affected by
(perturbative or non-perturbative) soft corrections.
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o Brambilla Pietrulewicz Vairo PR D85 (2012) 094005



E1 transitions

E1 transitions always involve excited states.

However, non-perturbative corrections affect the quarkonium wave-functions:
at the are non-perturbative.

For weakly-coupled quarkonia, non-perturbative corrections to the quarkonium
wave-functions also involve and are of

o relative order v? (if Aqcp ~ mv?)
e or suppressed by asv? (if Aqep < mv?).

Unlike M1 dipoles, E1 dipoles do not commute with the octet Hamiltonian.



E1 transitions: color octet contributions

where
85EH(>\)
H

= = [ 0B (R0, 0) 7B (R, 0)]0) (HOre S BE a]  ()
0

and similarly for the other contributions.



E1 transitions

E1l
n3Pjy—n’/3S51 v
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where jo,l(,] ) and jo,o are the (non-perturbative) initial and final state corrections.

o Brambilla Pietrulewicz Vairo PR D85 (2012)

094005






J/ — ney

d3k
Cpmsmer = [ Ty AU — k= BL) [kl 417/

We assume the J/+ and 7. to be Coulombic and weakly coupled: mv? > Agcp.



J/ — ney

Up to order v? the transition .J /1) — 7).~ is completely accessible by perturbation theory.

16 4 k’?; as(My/y/2) 32 2
FJ/wﬁncvzgaecMﬁ/w ST _2_70‘S(PJ/w)

The normalization scale for the ag inherited from ™ is the charm mass
(as(My/y/2) =~ 0.35 ~ v?), and for the as, which comes from the Coulomb potential, is
the typical momentum transfer p;,,, ~ 2mas(py/)/3 ~ 0.8 GeV ~ mu.

Ty /psmey = (1.5 £ 1.0) keV

to be compared with the non-relativistic result ~ 2.83 keV.

o Brambilla Jia Vairo PR D73 (2006) 054005



Improved determination of M1 transitions

o Exact incorporation of the static potential.

e Renormalon cancellation.

(

Vs + 25mRS/ Z V(Rs,ak+1 (1/r) ifr<uvt,
VS,RS/(V, Ve, Up,T) = <

Vs + 25mRS/ Z V(k)s,ozk""l(l/) ifr > vt

\

o0 Kiyo Pineda Signer NP B841 (2010) 231



Improved determination of M1 transitions

o Exact incorporation of the static potential.

e Renormalon cancellation.

2.6 T T T

O(a)

2.5

2.4 O(Gz)

2.3 O(Gi)
2.2 // O(a™)
2.1

1.9

T - n(1S)y) (keV)

18

v (GeV)

FJ/qﬁ_H?c’Y = 2.12 +0.40 keV

o Pineda Segovia PR D87 (2013) 074024



I" j/—n.~ as a probe of the .J/1 potential

16 , k2 <1+%aS(MJ/\I,/2)_g<1|7~v8'|1>+2<1|v8|1>>

r = —ae. —5—
Hemmey g e ME 3 o« 3 My Mg

4 o 2 (1lrV/|1 1|Vsl|1 32
o Ify,— 29 (M): 2 (AfrV{]| >_|_2< Vs >:__as('u)2<0
3 T 3 MJ/‘I’ MJ/\II 27
2 {(1|rV!]|1 11Vsl|1 4
o FV,zor— 20Vl AL 4 o gy
Mj, e Mj/w 3 My gy

A scalar interaction would add a negative contribution: —2(1|Vs¢81ar |1} /M /-



J /1 — n.y (experimental status)

o Only one direct experimental measurement existed for long time:
FJ/w_H?c’Y — (114 :l: 023) keV

oCrystal Ball coll. PR D34 (1986) 711

e The situation changed in the last few years:

T /psmey = (1.85 % 0.08 £ 0.28) keV

o CLEO coll. PRL 102 (2009) 011801

Ty psnery = (2.98 £0.187022) keV

o from KEDR coll. PL B738 (2014) 391
number not reported by the PDG!



J /1 — n.y (experimental & theoretical status)

QW - n(1S)y) (keV)

T T T
Experiment

Theoretical predictions

PDG upper limit — — -
PDG lower limit — — -
Crystal Ball (86)

CLEO (09) —@)—
KEDR (10) —4p—

Disp. relations (80)
Sum Rules (84) '_E_'
Sum Rules (85) '_E_'

Latt. QCD (13)
HPQCD (12)

Eff. theory (06) —A2—

Eff. theory (13) l—é—i

o Pineda Segovia PR D87

(2013) 074024







FT(ls)—mb(lS)v

We assume the Y(15) and 7, (15) to be Coulombic and weakly coupled: mv? > Aqcep.
In the improved perturbative framework

Ty (15) sy (15)y = (15.18 £ 0.51) eV
o Pineda Segovia PR D87 (2013) 074024

To be compared with the NLO calculation (without resummation):

Tr(18) =y (18)y = (ky/71 MeV)? (15.1 £ 1.5) eV

0 Brambilla Jia Vairo PR D73 (2006) 054005



M1 hindered transitions



Uy 29)—nmy(18)7> Uhy(1P)=x01 (1P)y @0 L'y 1Py 1, (1P)

We assume n = 2 bottomonia to be Coulombic and weakly coupled: mv? > Aqcp.

th(lp)—)XbO(lp) ~N = 0.962 £+ 0.035 eV
th(lp)—)Xbl(lp) ~N = 8.99 & 0.55 meV

Lxp2(1P)—hy(1P) y = 118 = 6 meV

Ty (28)—my(15)y = 614 eV

o0 Pineda Segovia PR D87 (2013) 074024



T(25) = np(15)7

Y(2S) -y n,(1S)
T T T T T T T

Zambetakis,Byers'83 Yte

=
N
L T

o
o]
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90% CL UL CLEO-Ill |

°
~
I

Grotch,Owen,Sebastian'84 B
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......................... wps@ezamsezgzsszeRizis ,
| ahde, Nyfalt Riska99 AB_______ Zhang.Sebastian Groch91A -

00 R — i L 1 A L enad e | 1
550 575 600 625 650
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Already CLEQO’s upper limit was problematic for many models.
More recently BRy(25) sn, (15)y = 3-9 £ 1.17 5 x 10~* [BABAR]
and BRry (25) s, (15)y = 6.170'5 0% x 107* [Belle]
o BABAR PRL 103 (2009) 161801, Belle PRL 121 (2018) 232001

But ok with FT(QS)—)nb(lS)v = 61_26 eV, BRT(QS)—H%(lS)'y = 21_2 X 10_4, k’Y — 612 MeV.



T(25) = np(15)7

Resummation of the static potential contributions is crucial for I'v 2.5y, (15)~-

600 T T T T T T T

500 r‘ 1 o)

400 H
O(a?)
300 H

o(a’)
200

F(Y(2S) - np(1S)y) (eV)

4
100 O(a”)

1 15 2 2.5 3 3.5 4 4.5 5
v (GeV)

e Strong cancellation between —(15|5p2/(6m2)|2S) and (15|Vss/[m2(E" — E{9)]|23).

o Pineda Segovia PR D87 (2013) 074024



E1 transitions



E1 charmonium transitions

E1 transitions are sensitive to the quarkonium wave-function even at leading order.

A systematic treatment that includes in a consistent way non-perturbative relativistic
corrections to the wave functions (mostly known from lattice) is still missing. Partial
results include some (but not all) NLO relativistic corrections.

process F{;;?RQCD/keV FgﬂfngCD/keV | Y FE}PPG/keV
X0 (1P) = J/wy 199 158 4+ 60 162-183 122 + 11
Xel(1P) — J/wy 421 302 + 126 340-363 | 296 & 22
X2 (1P) — J/wy 568 415 £ 170 413-464 | 386 = 27
he(1P) — n(15)y 909 447 = 272 - <600
W (25) = x0(1P)y 53.6 214 +16.1 | 26.0-40.3 | 29.4 1.3
W(2S) — xa(l ) 45.2 30.7 £13.6 | 28.3-37.3 | 28.0£ 1.5
W(2S) — xe2 (1P 31.6 25.6 £9.5 17.5-22.7 | 26.5 4+ 1.3
Ne(25) — hc(lP)/ 38.1 31.0+11.4

oPietrulewicz PoS ConfinementX (2012) 135

For bottomonium, relying on its Coulombic nature, a more systematic study is available.



E1 bottomonium transitions: set up

e We consider the E1 transitions v, ;7 (1) — T(15)y and hy(1P) — n,(15)~.

e We assume m;v? > Aqcep and make the calculation accurate up to order v2.
Under this condition:
the wave function can be computed perturbatively;
non-perturbative corrections to the wave function (coming from the potentials
and the octet) may be neglected.

e We take as central value the one corresponding to the renormalization scale

v = 1.25 GeV, which is the scale that solves the self-consistency relation for the
2mpas (V)

3
e We estimate the uncertainty as the largest between 1/2 of the maximum
difference between the leading order and the order v2 result and the variation of
the order v? result over the range 1 GeV < v < 3 GeV.

Y (1S) Bohr radius at one loop: v =

e Relaxing the condition m;v? > Aqcp to mpv? ~ Agep Will enlarge the
uncertainties of at least a factor 2.

0 Segovia SteinbeiRer Vairo PR D99 (2019) 074011



Improved determinations of E1l transitions

................... 70—
70} Vp =00 v, = 1.0 GeV
60f 60!
S 5ol S
L £ 50f
~ —~

On the example of the ;1 (1 P) — T(15)~ transition:
blue curve: LO; orange curve: NLO; green curve: NNLO; red curve: NNNLO.

0 Segovia SteinbeiRer Vairo PR D99 (2019) 074011



Xeo(1P) — T(1S)y

I' [keV]

2ar Xvo(1P) = 7T (15) ]

v [GeV]

blue curve: LO; orange curve: LO + E,Ey1 ; black curve: final order v? result:

T'(xp0(1P) — T(1S)7y) = 2873 keV

0 Segovia StelnbeilRer Vairo PR D99 (2019) 074011



X1 (1P) = T(15)y

38:— /r
- S
% 36_‘ ’,’
— L/
ool
34' [l
[/
32-_ ]
1.0 1.5 2.0 2.5 3.0

v [GeV]

blue curve: LO; orange curve: LO + E,Ey1 ; black curve: final order v? result:

['(xp1(1P) — T(1S)y) = 3713 keV

0 Segovia StelnbeilRer Vairo PR D99 (2019) 074011



Xp2(1P) — T(15)y

T A . ——— :

46} ]
> 44 -7‘//,.———"”'=" ]
O s
=, ot
L{ 42 i ,I,’

s

I//
38 _,'I ........... Xv2(1LP) — yT(LS) |
1.0 1.5 2.0 2.5 3.0
v [GeV]

blue curve: LO; orange curve: LO + £E'; black curve: final order v?2 result:

T'(xp2(1P) — Y(1S)y) = 4515 keV

0 Segovia SteinbeiRer Vairo PR D99 (2019) 074011



he(1P) — np(1S)y

70—
65} 1
e — e
3 60F e :
é ,—"—
& pras
55 r ,/’
I”l
50t
,,,,,,,,,,,, ho(1P) — yns(LS) |
1.0 1.5 2.0 2.5 3.0

blue curve: LO; orange curve: LO + £E'; black curve: final order v?2 result:

T'(hy(1P) — n,(1S)y) = 6318 keV

0 Segovia SteinbeiRer Vairo PR D99 (2019) 074011



Comparison with the literature

Mode LO O@?) | cQM R GI BT LFQM  SNRy/,
xp0(1P) — Y(1S)y | 28.5 28.4 28.1 29.9 23.8 25.7 - 26.6/24.3
xp1(1P) — Y(1S)y | 36.0 37.4 35.7 36.6 29.5 29.8 - 33.6/30.0
Xp2(1P) — Y(1S)y | 41.0 44.8 39.2 40.2 32.8 33.0 - 38.2/32.6
hy(1P) — 1y (15)~y 595.2 63.2 43.7 52.6  35.7 - 37.5 55.8/36.3

0 Segovia Ortega Entem Fernandez PR D93 (2016) 074027 [CQM]
Ebert Faustov Galkin PR D67 (2003) 014027 [R]
Godfrey Moats PR D93 (2015) 054034 [GI]
Grotch Owen Sebastian PR D30 (1984) 1924 [BT]

shi EPJ C77 (2017) 253

[LEOM]

Li Chao CTP 52 (2009) 653 [SNRg/1]



Total widths

Mode B; =T;/T" [PDG] T, T

Xpo(1P) — T(1S)y  (1.944£0.27)% 2873 keV 1467073 MeV
xp1(1P) = Y(18)y  (35.0+£2.1)% 37 2keV  1071) keV
Xp2(1P) = T(1S)y  (18.8+1.1)% 4575 keV 23872l keV
hy(1P) — np(15)y (52T9H% 6310 keV 121715 keV

0 Segovia SteinbeilRer Vairo PR D99 (2019) 074011



Conclusions



EFTs provide a description of quarkonium electromagnetic transitions in terms of
systematic expansions in as and v. This description shows that:

e Thereis no scalar interaction.

e The quarkonium anomalous magnetic moment is small and positive:
K = 2ai5/(3m) + ...

e M1 transitions involving the lowest quarkonium states may be described
at relative order v? entirely by perturbation theory.

e Theory expectations for M1 transitions are consistent with data.

e [E1 transitions require the calculation of non-perturbative corrections to the
quarkonium wave-functions. These can be calculated from the quarkonium
potentials evaluated on the lattice, which are mostly known.

e Assuming the x7(1P) and hy(1P) to be weakly coupled Coulombic bound states
we have predicted the transition widths for x; ;(17) — Y(15)~ and
hy(1P) — n,(15)~ providing eventually also predictions for the total widths.
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